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I

Theory of Stress

and Strain

1. STRESS TENSOR

The forces which must be applied to a solid when it is deformed
under pressurc are determined not only by the natural properties
of this solid. They also depend on the conditions under which the
process of deformation is taking place, and, in particular, on the
stresses which arise in the solid as its shape is being altered.

The direction of a stress vector on a given surface can vary: hence
it is convenient 1o decompose it into two vectors, the one being nor-
mal and the other being tangential to the surface in question. The
first vector is called the vector of normal stress and is denoted by the
letter o, whilst the other is called the vector of tangential or shear
stress and is denoted by the letter T.

In an orthogonal coordinate system, when one of the axes is per-
pendicular to the surface being considered and hence coincides
with the direction of the normal stress, the vector of total stress for
this surface is specified by the two projections parallel to the remain-
ing two coordinate axes. Consequently, the total stress vector is
determined by one normal stress vector and two tangential stress
vectors.

In view of the fact that three mutually perpendicular surfaces
corresponding o the coordinate axes XY Z (Iig. 1) have to be consid-
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ered for the analysis of the state of stress of any solid, the state
of stress is specified by the nine quantities

OxTayTxz
T=|Tyx0,Ty: (I.1)
| TzaTzy02

These nine quantities, which are dependent on the orthogonal coor-
dinate system employed, constitute a stress tensor.

z
c’Z

T yT

Fig. 1. The nine stress vectors for a given orthogonal coordinate system

In effect the tensor consists not of nine but six quantities, since
the values of the tangential stresses disposed symmetrically about
its main diagonal are the same, i.e.,

_ _ 9
Tay = Tyx Taz=Tzx Tyz== Ty (I.2)

This can easily be verified if one considers the equilibrium of the
parallelepiped shown in Fig. 1. Since the moment of the forces acting
on the parallelepiped must be zero about the AB axis, then

T, dxdydz— 1, dxdydz=-0
or
Tyz = Tzy

where dz, dy and dz are the sides of the parallelepiped.
The remaining two equations (I.2) can be proved in a similar man-
ner.
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2. PRINCIPAL AXES OF STRESS

We shall show that in a Lhree-dimensional state of slress there
exist three mutually perpendicular surfaces on which the tangential
slresses are zero.

The normal stress on an arbitrarily chosen surface (Fig. 2) can be
represented in terms of the total stress s and ils projections sy, s,

Fig. 2. The stresses on the faces of a tetrahedron

and s, on the coordinate axes by the expression
G==sc0s(s, N)=S8yl--s,m-i s;n (I.3)

where I, m and n are the cosines of the angles which the coordinate
axes make with the normal N to the given
surface.
Considering the ecquilibrium of the tetrahedron formed by an
inclined plane and the three planes passing through the coordinate
axes we find that

SxF:‘ Uxe +Tnyy+TZxFZ
where F,, F, F, and F are the arcas of the faces of the tetrahe-

dron.
Since

F.=Fl F,=Fm and F,=Fn
then
Sx:O'xl_E_Tyxm“Fszn (133)
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Projecting the forces acting on the telrahedron on the other two
coordinate axes, we have
Sy Oy - Txyl A Ty ([31))
and
s, ot T,m (I.3¢)
We substitute these values of s,, s, and s, into equation (I.3):
0= 0,02 1y uml--1nl o oym? < T lm - T nm -l 0,0 -
+ Txdn4-t,,mn
or, noting equations (I.2),

0= 0xl2~ oym?-; o,n% - 2ty lm - 21l -} 2t,mn (1.4)

In the same system of coordinates we draw a straight line r from
the origin, parallel to the normal N, and of length

l/ C
Py e —
o

where C is an arbitrary constant.
Denoting the projections of the straight line r on Lhe coordinate
axes by z, y and z, we obtain

When these values are substituted into equation (I.4) it will
acquire the following form:

0,2 O Y2 - 0,8% 4 20,22 -1- 212y + 21,z = C (L.3)

This is the equation of an ellipsoid whose centre is at the origin,
but whose principal axes do not coincide with the coordinate axes.
When the coordinate axes are rotaled relative to the ellipsoid so
as to coincide with its principal axes, equation (I.5) assumes the
form
0,2s - oyt -+ 0,20 = C

and the following coefficients become zero:
Tay= Tz = Tyz == 0

From this it follows that in a three-dimensional state of stress
only normal stresses act on three mutually perpendicular planes, the
shear stresses being zero.

The normal stresses on these planes are called principal normal
stresses.

Principal normal stresses are usually denoted by o,, 0, and o,.
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3. GRAPHICAL REPRESENTATION OF STRESSES
IN A THREE-DIMENSIONAL STRESS STATE

We shall determine Lhe relation beltween the normal and tan-
gential stresses which arise on a plane inclined at an angle to the
principal axes of stress.

Let us express the normal and shear stresses on the inclined plane
of the tetrahedron (Fig. 2) in terms of the principal normal stresses,
when these are directed parallel to the coordinale axes:

O'_—_O'il2'j' 0’2"’12 ‘ 0'3’7,2 (I.G)

P, 2 : 2 2 2 7
T2 =2 — 0% o}l2 - oimP - aan® — (012 -1 oym? - o3n?)? (1.7)

To these equations must be added the equation
24+-m?--n?-1 (1.8)
Solving for [, m and n we have:
2. T (0—0y) (0-—03)
(01— 0g) (01— 03)
124 (0—0y) (6—03)
(02— 0y) (02— 03y)

n2:T2+(0_c,) (0—0y) (I.11)

(03—0y) (03— 09)

(1.9)

m? =

(1.10)

We number the principal normal stresses so that the inequality

012> 02 > 03
holds.
For real values of [, m and n satisfying equations (I.9), (I.10)
and (I.11), the numerators in equations (I.9) and (I.11) must be posi-
tive, whilst the numerator in (I.10) must be negative, i.e.,

21 (60—0,) (0—03) >0 (I.12)

24 (0—0;) (6—03) >0 (1.13)
and

12 (0—0y) (0—03) <0 (1.14)

As a particular case of these conditions we obtain the equations
of circles whose centres are located on the o-axis (Fig. 3):

T (0—02) (60— 03) =- 0 (1.15)
T+ (0—0y) (6—0y)=-0 (1.16)
2+ (0—0y) (6—03) == 0 (1.17)
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The geometrical significance of these equations can be shown by
simple transformations. For example, if we add <@>2 to both
sides of equation (I.15), we obtain '

: /7 Oy -1- 03 \ 2 Go— G 32
2 (5 _ O 03 \=__/ 03—0s
T 2 > ( 2,

. . . . 0’ —_—
i.c., the equation for a circle whose radius equals ZTU‘* , and whose

centre is located on the o-axis the distance %‘;03 from the origin.

' P
] S
W o l
_ —_ - [
G
fe— G,
6,

Fig. 3. The circles of stress

The left-hand side of the expressions (I.12) and (I.13) can be zero
or greater than zero, whilst the expression (I.14) can be less than
zero. Accordingly, o and t must lie outside the circles constructed
on the diameters 6, — 0, and 0, — 03, and at the same time they must
lie inside the circle constructed on the diameter o, — o, (Fig. 3),
i.e., the normal and shear stresses are specified by a point lying
within the shaded area shown in Fig. 3.

By using the stress circle diagram for a three-dimensional stale
of stress, we can find the limiting values of the normal and shear
stresses. This graphical representation of stresses was suggested by
Mohr.

Two important conclusions can be drawn from the stress circle
diagram.

1. The value of the normal stress on any plane lies betwecen the
limits o, and o3, i.e., one of the principal stresses, 04, is the maximum,
and the other, o3, the minimum normal stress.

2. There are three extremal values of shear stress, equal to the
radii of the stress circles

0,—0 0;—0 0;—OC
Tie== 12 L oTys= 12 L Ty 22 2 (1.18)
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the greatest of which (t43) occurs on the plane where the normal stress

01+ 03
2

These three values of shear slresses, T4s, T3 and 7,3, are termed
principal shear stresses.

g =

4. DETERMINATION OF THE ORIENTATION OF THE PLANES
OF PRINCIPAL SHEAR STRESS

The orientation of the planes of principal shear stress is deter-

mined from equations (I.9), (1.10) and (I.11), by substituting the
appropriate values

0;—0
G — 193

(e} (o}
——rg" and tT=

from which the orientation of the plane where the shear stress

allains a maximum value is found relative to the principal axes
of slress:

01— 03 2_L 0'1-4:—0'3 _ 01+03 L
lz,»__< ) (PR ) (MR —e)

(04— 03) (04 —03) 2

or

l= 4 aye=45°
and
<01—03> <G1 0 g, 0103 — o,
m*= >< > =0

(02 —04) (02— 03)

or

a,=0

where o, and o, are the angles between the normal to the required
plane and the principal axes of stress.

Thus the plane on which the shear stress attains its grealest value
is inclined at an angle of 45° to the direction of the stresses ¢, and
03, and is parallel to the direction of the stress o, (Fig. 4a). There
are two such planes. They are equally inclined to the o,-axis and
include an angle of 90° between themselves.

The orientations of the remaining two principal shear stresses are
found in a similar manner (Fig. 4b and c).

2—662
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Bearing in mind that to each plane we can asign another one
parallel to it in such a way that the stresses on these planes halance
each other, the planes of action of all three principal shear stresses

Fig. 4. Orientation of the planes of principal shear stress:

1—03, ) G2—03
2223, () Tag=2222

(e
(n) T13= 3

01—02
b) T12=IT

Fig. 5. The rhombic dodecahedron formed by the planes
of principal shear stress

may be represented in the form of a rhombic dodecahedron (Fig. 5).
For this reason principal shear stresses are also called dodecahedral

stresses.

5. OCTAHEDRAL STRESSES

The stresses on a plane which makes the same angle with the three
principal axes of stress are called octahedral, since there are eight
such planes in all and together they form an octahedron (Fig. 6).

Octahedral stresses, like principal normal and shear stresses,
possess certain characteristic properties.

The angle between a plane of the octahedron and a principal stress
axis is found from the equation

I2rm2dn?=1
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Since
l =M=
then obviously
1. m:_.n:% (@ ~ 559

We determine the normal octahedral stress from equation (I.6),
substituting the values of I, m and n:

014-09--0
Goor == 0208 (1.19)
that is, the normal octahedral stress is equal to the mean of the
principal stresses at a given point.

z

Fig. 6. An octahedron

This stress is also called the mean hydrostatic pressure. Since a
plastic strain results only from a change in the shape (not vol-
ume) of the body, this stress does not give rise to a plastic strain. It
produces only a change in volume (dilatation) and a corresponding
elastic strain.

We determine the shear stress from equation (I.7):

22 2 _ 0i+o0i-+to 04-F Oy+03 \2
Toet = Soct — Opet = 3 - 3

N

Simplifying this expression we obtain
2
Toet = 5 (07 + 03+ 05— 040, — 0,03 — 020%) (1.20)

or

Toct=é V(Gx—az)z“i‘ (0y—03)%+ (02— 03)? (1-21)
2%
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Expressing T, in terms of the principal shear stresses we have
2 v m T T
Toet =5 V Tt Ty + o (1.22)

In contrast to the octahedral normal stress, this oclahedral shear
stress does not produce a volume change but leads to deformation
of the body.

This stress is of great importance in the study of plastic deforma-
tion, and it will be shown later that it is proportional to that part
of the potential energy of elastic strain which tends to deform the
body without producing volume changes.

6. THIRTEEN SPECIAL PLANES OF STRESS

It was shown above that in a three-dimensional state of stress
there are three mutually perpendicular planes with principal normal
stresses acting on them. These three planes, together with three other

Ag3

Ooct

|
|
|
|
%o |
|
|
|

9

Fig. 7. A twenty-six sided solid showing the thirteen stress planes
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planes which are parallel to them and which carry opposing stresses,
can be represented conveniently in the form of a cube whose faces
are perpendicular 1o the principal axes of stress.

For this recason principal normal stresses are also called cubic
siresses.

The six planes of principal shear stress, as was mentioned above,
can be represented by a dodecahedron (sce Fig. 5).

Adding the four planes of octahedral stress to the three planes of
principal normal stress and the six planes of principal shear stress
enumerated above, we have altogether {hirteen planes of stress which
have a number of interesting properties.

These thirteen planes, taken together with other thirteen which
are parallel to them, can be represented conveniently in the form of
a 26-faced solid, a hexaicosahedron (Fig. 7).

7. STRESS INVARIANTS AND MEAN STRESS

Let us consider the equation of equilibrium of the tetrahedron
shown in Fig. 2, when the inclined face coincides with one of the
planes of principal normal stress. Then equations (I.3a) to (I.3c)
assume the following form:

Sx=0l=0 4+ Tym--1,.0
Sy =0m= 0ym -=-Ty,l - T;yn

§2=OR =0 N Ty,l 4 T,,m

where o is the stress acting on the inclined plane of the
tetrahedron
sy, S, and s, are projections of this stress on the coordinate axes
(Fig. 8).

These threce equations are supplemented by
2-m?--n?=1

We express o by the components of the stress tensor, i.e., we
eliminate [, m and n from these four equations. We thus obtain

. : 2 2 2
03— (0y - Oy 0;) 6% - (0x0y + 020, + 040, — Tay — Tro — Ty.) O —
2 2 2 M
— (0200, 4 2Ty Ta, Tyz — OxTy: — Oy Ta, — 0:T50) = 0 (1.23)

The three roots of this cubic equation will give the three values
of principal normal stress ¢ == g, 0 = 0, and ¢ = 03 The values
of the principal normal stress do not depend on the coordinate axes;
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consequently, the values of the coefficients for a given point will
be constant for any direction of the coordinate axes. For this reason

z

T

Fig. 8. The equilibrium of a tetrahedron

these coefficients are called stress invariants, and they can also be
cxpressed in terms of the principal normal stresses. We have:
the linear invariant

Ox+0y+0,=0,+4 0y 03 (1.24)
the quadratic invariant

2

2 2 ‘ . =
GOy 0307 O0y0; — Tyy— Toz— Ty, == 010y - 0,03 -~ 0203 (IZD)
and the cubic invariant

| 2 2 2
0x0y0; ZTxyszTyz — O0xTyz — 0Tz — 0;Tay — 010203 (126)

The first two stress invariants have a definite physical meaning.
The linear invariant divided by three equals the mean stress. which
is also termed the hydrostatic pressure or octahedral normal stress
(I1.19):

0':yc"“o-y‘,Laz 0y -i- 09 03

3 = 3 = Om (L.27)

It characterizes the change in the volume of the body being strained,
i.e., its elastic strain.

Using the quadratic and linear invariants in a modified form, as
will be shown later, we can find an expression for that part of the
potential energy of elastic strain which tends to change the shape
of the body being strained.
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8. EXPRESSION OF SMALL STRAINS IN TERMS OF PARTIAL DERIVATIVES

Let us study the deformation of a body by means of an infinitely
small parallelepiped dxdydz belonging to it (Fig. 9). As a result of
the deformation, the parallelepiped is displaced, and the point A4
takes up the position of the point 4, (Fig. 10). We denote the
displacement of (his point along the coordinale axes by u, v
and w.

If as a result of the deformation the point A has been displaced
along the z-axis by an amount u, then as a result of the deformalion
of the section dz the point B is displaced by the amount

Ju

u+ﬁd1

where Z_l: is the increment of the function u in the direction of the
z-axis.
Since the increment of an element of lenglh dx is Zi; dz, the normal
strain in the direction of the z-axis is

0 [y
e U_‘; (1.28)
Analogous expressions for the normal strains in the direction of
the y- and z-axes are:
Je duw
&= gy and e, —— (I.29)
As a result of shear deformation the sides AB and AC of the paral-
lelepiped need not bhe parallel to the coordinate axes. The sum of the
angles of rotation of these sides will obviously be the expression for
the shear deformation in the plane of the z- and y-axes:

Yoy =t 1

To determine the angle o we find the displacement of the point 7
in the direction of the y-axis. If the point A has been displaced an
amount v in the direction of the y-axis, then the point B must be
displaced by the amount

. dv
12 s dzx
where the partial derivative indicates the variation of the function v

in the direction of the z-axis. The angle @ can then be expressed by
the difference in the displacements of the points B, and 4, in the



Qu
u+ $g’x

Fig. 10. Deformation of a line segment

&
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direction of the y-axis, divided by 4,4 ,:

17
v—l———udx'—v
0z
tan o —

u
u—{—W dex—u--dzx

Bearing in mind that in the present case small deformations are
considered, and that the quantlty dx is small in comparison with
dz, we obtain

__ v
ur
and furthermore
du dv
ny=0_y+% (I1.30)
In the same way we find the shear strain in the remaining two planes:
du | Ow . Jv 0w .
Ver=Gr o Gp Ve=gr gy (I.31)

9. PRINCIPAL AXES OF STRAIN

Let us consider the deformation of the line segment AB (Fig. 10).
As aresult of the deformation the points 4 and B will be displaced
by different amounts. If the displacement components of the point 4
equal u, v and w, then the displacement components of the point B’
will be
uy=u-~du vi=v-+dv w;=w-+dw
or

du_uJ———d ~|— d —l—(;u dz

——(lu_v—l-—da:~——dy --—dz

dw ow . Jw
w—-dw =w-\- ——dr-- ——dy— - 4z

After the deformation we can express the length of the segment
AB (with its initial length taken to be unity) as follows, having pro-
jected il on the coordinate axes:

(1-+¢)?=(dx+du)?+ (dy + dv)? - (dz -~ dw)? =
= <dz¥ du —dzr + ﬂd L alj dz)z»}— <dy—‘l-% dr—

4,——(11—'——dz) <dz L”idx:-ﬂdj ‘jjdzf (1.32)



26 THEORY OF STRESS

Denoting the cosines of the angles between the segment AB and
the coordinate axes by I, m and n respectively, we find that dr = [,
dy = m and dz = n.

Alter substituting these values into equation (I.32) we have

(1 e32= <1 Lo ) +m—- ou -+ Ou (1 o >—|—

()b Jw ow 12
- - . ,JA - ' -
- l G°E ] +|_ (1 l + " f)y]
- . ou  Jdv dw
Neglecting the squares of the quantities e, iz ay and ol and

also Lheir products, and assuming at the same time that

Zim2ni=1
we obtain

t;l" 4 —l—lmi)i—{—ln—+m2——+lm—+mn +
5 0 o
Fn2 2 i % m (1.33)
01
e =gy —miy, +ne, + lmyyy -+ Inyy, - mny,, (1.34%)

Equation (I.34), being analogous to equation (I.4), is easily trans-
formed into an equation for an ellipsoid.

We draw from the origin a straight line of length r, parallel to
the segment AB (see Fig. 10), where the length r is given by

I/T
r=v1 =
€

ey I=5 m=g n=< (1.35)

Then

wlere z, y and z are the projections of the section r on the coordi-
nate axes.
After substituting the values of I, m and »n from equation (I.35)
into equation (I.34) we obtain

exx? - g,y - 8,22 - Yy XY - VX2 + Yy = C (1.36)

This equation, like (I.5), is an equation of an ellipsoid whose
cenlre is at the origin, but whose principal axes do not coincide
with the coordinate axes. Thus, there must be three mutually
perpendicular directions along which the terms y.,, y., and 7y,
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slrain is absent.

These three mutually perpendicular directions
are called the principal axes of strain. Along
these principal axes of strain only tension
or compression takes place; at the same time
along one of the axes the value of the strain
at a given point is a maximum, and along
another it is a minimum. ~

Comparing the result just obtained with the
results concerning principal normal stresses
(see Chapter I, Section 2) we conclude that the
principal axes of strain coincide with the axes
-of principal normal stress.

become zero in equation (I.36), i.e., the shear '/ Y,
|
[
|
|
l
I
|

S
\{
)

10. EXPRESSION OF LARGE STRAINS

The ratio of a linear deformation to the
original dimension in the case of large slrains
does not characterize the true strain. In this
connection let us consider the elongation of a  Fig. 11. Deformation
rod, when its length [, after deformation is ol a rod
considerably greater than the original length 1.

The infinitely small strain of the rod, when there is an inler-
mediate length between [, and Iy, will be (Fig. 11):
dl

de == - (1.37)

Then the total strain of the rod, as it elongates from [, to I, can
be expressed as follows:

I
1 ! .
lo

Consequently, the true strain should be expressed not by the ratio
of the linear deformation to the original lenglh but by the natural
logarithm of the ratio of the final length to the original Iength.

If arod of rectangular cross section or a parallelepiped is deformed,
the depth of the cross section being reduced from ky to &, and the
width from by 1o by, the strain in the & and b directions can be repre-
sented by the following expressions:

hy

ey == loge Ty and &, = log, Z—; (1.39)
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If at the same time the volume of the body remains constant,
then the sum of the strains must be zero:

e --en e =0 (L.40)

or
Iy hy by _ "
log, 7 _f“loge]TO‘f‘lOgeE—O (I.41)

This can easily be verified if we recall that
lohobo - llhlbl

or
l1 hl bi

Ip by by

After taking logarithms we obtain equation (I.40).

11. PLANE STRAIN

Plane strain is the name given to a strain which takes place in
a single plane when the dimensions of the body in the direction
perpendicular to this plane remain unchanged, i.e.,

e, =0
If at the same time the volume of the body is not altered, then
ex+8&, =0 (1.42)
or, when & = const.,
l I .
logel—;:logehi: (1.43)

For the dimensions of the body to remain unclhanged in the direc-
tion perpendicular to the plane in which the strain takes place, due
to the phenomenon established by Poisson, the stress must be
equal to the mean stress:

- O'x+0'y . 0'1—:—0'3

0r=—5 5 (I.44)
This result is an immediate consequence of
1 ‘ =
Ez:F[Uz_.u(Gx —- O'U)] == () (I/b))

where p = 0.5 because the volume is constant.
The case of plastic deformation just described is widespread in
practice. Many processes of shaping by pressure correspond to this
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process of plastic deformation, in particular the rolling of wide strips
when the edge effect—where a strain is observed in the direction
of the width of the strip—can be neglected.

12. STRESSES IN PLASTIC STRAIN

As a result of experimental studies of the extrusion of metals
through dies of different shapes, the French scientist Tresca con-
cluded as long ago as 1864 that the onset of a plaslic strain is not
determined by the absolute value of the normal stresses, but by their
difference, or the maximum value of the shear siress. This conclusion
played an important role in the development of the theory of plastic
strain, and it retains much of its significance at the present time.

Subsequently the results of the investigations by Tresca were
developed by Saint-Venant (France) in 1870-1872, who proposed
that in the case of plastic strain (under static conditions) the stresses
should be expressed by the ratio

0y{—0 a ’
Tmax = — 5 =~ (1.46)

where o, is the yield stress which is usually defined as the stress
arising in the test piece at the onset of a notable
plastic deformation, when the test piece is subjected
to tension under static conditions.
When the cffects of temperature, strain rate and work hardening
on the yield stress are allowed for, the relation (I.46) can be written
as follows:

01— 03=0g¢ (147)

where o, is the actual yield stress for a linear strain (a simple
compression or tension), after the effects of tempera-
ture, strain rate and work hardening have been allowed
for.
This quantily is often denoted by k;. In terms of o, it is appro-
ximated by the equation

Ogq = NyNyrN,0 (I1.48)

where n;, ny, and n, are coefficients which allow for the effects
' of temperature, work hardening and
strain rate on the resistance to defor-

mation.
In a three-dimensional state of stress, when there are three values
of the principal normal siresses o4, 0, and o5 the condition (I.47)
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is expressed by the three inequalities:

|oy—03| < 0g )
|oy— 0, <0, } (1.49).
|92—03|<Uu J

Al the same time the necessary and sufficient condition for a plas-
tic strain corresponds to one of the three differences of principal nor-
mal stresses shown above attaining —o, or ——0,. The same condi-
tion can also be written as follows:

o, o] a -
T | <=F |tel<50 [t <- (I1.50)

In a rectangular system of coordinales T,s, T;3 and T, these ine-
qualities can be represented in the form of a space bounded by the
six planes given by the equations

O, - [9) a,
Tie= =4 —- T13=i7a and Ty3= 4 —5-

The surface of the cube thus obtained, with its centre localed at
the origin and with a side equal to ¢,, will be the limiting surface
corresponding to plastic strain being associated with one of the
slresses Tyo, T4z and To3 (Fig. 12).

Bearing in mind that

Ty -+ Tyz -+ Tag =0 (1-51)

instead of the limiting surface we obtain a closed contour, the result
of the intersection of the cube with the plane given by equalion

(I.51). This contour is a regular hexagon with side equal to lﬁf‘2

(see Fig. 12).
R. von Mises (Germany, 1913) drew attention to the circumstance
that at the corner points of the hexagon two principal shear stresses

attain their greatest value, equal to %—a, whilst at the same time

the third shear stress is zero. Thus, the condition for plastic strain

given above does not take into account the effect of the third prin-

cipal shear stress. Because of this von Mises suggested that the hexa-

gon be replaced by a simpler figure, that is, by a circumscribed circle.

In this case the cube is replaced by a sphere whose equation is
T

sz"?‘ T?3+ T::a =5 (152)

This equation specifies the relationship between the stresses which
holds for plastic strain according to modern theory.
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The same equation can also be derived by considering the incqual-
ities (I.49) in a rectangular system .of coordinates ¢4, 0, and o,.

According to the inequalities (1.49), the condition for plastic strain
can be represented by the limiting surface of a body bounded by the
six planes:

0;—03=+4 0, 03— 0y3=20, Op—GCG3= 1+ 0O, (1.53)

A body formed by these six planes is a regular hexagonal prism
of infinite height. The axis of this prism passes through the origin

(T(l

+ 3

Fig. 12. The cube formed by the planes 145 = + % ; Tz =

G . . . :
and Toy= 4+ ?" and its intersection with the plane 1j5— 153 - 753=0

and forms the same angle with all three coordinate axes (Fig. 13).

The distance between opposite planes of this prism is given by
- - 5

a=YVol+0o.=0,/2, and its side by g, %

In order to eliminate the discontinuity when a given point passes
from one face of the prism to another, this prism is replaced,
according to G. Hencky (Germany), by a circumscribed cylinder
2
—g" .

When the cylinder is cut by a plane passing through the o,- and
0y-axes, corresponding to o; = 0, we have an ellipse whose centre
is at the origin. The equation of this ellipse is

Ao} -+ Boi--Coy0q =1 (I1.54)

: . /
with radius equal to o, V



Fig. 13. The hexagonal prism formed by the six planes correspond-
ing to equations (I.53)

o

1—(— Tp—>

Fig. 14. Ilexagon and circumscribing ellipse obtained from the
intersection of hexagonal prism and cylinder with the plane 6;=0
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Since the ellipse constitutes a contour which contains the prism
in the plane o3 = 0 (Fig. 14), the coefficients in equation (I.54)
can be determined from the following conditions:
when o4 == 0, 0, = 0,

1
B =—
(5"
when o, 0, oy G,
1
A - =5
OCL
when oy Gy == O,
. 1
C —=
Oa

Equation (I.54) then assumes the form
0;— 0,05 ! 02= oy, (1.55)

Since the cylinder is located symmetrically relative to all three
coordinates, it is obvious that when o3 == 0 the expression (1.55)
gives the equation of the cylinder:

0} -+ 02+ 03 — 0,05 — 0103 -— 0303 = Oy, (1.56)
Multiplying both sides by 2 we obtain
(04— 03)2-- (04— 03)% -+ (05 — 03) = 203 (1.97)

This equation repeats equation (I.52), and it may also be obtained
if in (I.52) the principal shear stresses are replaced by the principal
normal stresses.

Equation (I.52), or (I.57), is the fundamental cquation of plas-
ticity characlerizing the relationship between the principal shear or
principal normal stresses for plastic deformation for any state of
stress. ‘

This equation of plasticity can also be obtained if we assume that
in a plastic deformation, for any state of stress, the octahedral shear
stress equals

2
Toct == _—\‘/;—

0, =~ 0.470, (1.58)

Substiluting this value of T, into equation (I.21), or (I.22),
we obtain equation (I.57), or (1.52).

3—662
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13. DEPENDENCE OF STRESSES ON THE POTENTIAL
ENERGY OF ELASTIC DISTORTION

The quantity of potential energy stored in a body during its
elastic deformation does nol specify the beginning of plastic defor-
mation. For example, in the case of pressure from all sides this energy
can be very considerable, but the body will not be subjected to plas-
lic deformatlion.

M. Huber (Poland, 1904) suggested Lhal the criterion delermining
the stress relationships in plastic deformation should be not the
total elastic strain energy, but only that part which is expended on
changing the shapeof the body; that part of the potential energy which
is expended on changing the volume of the body is Lo be disregarded.
But the suggestion of Huber remained unnoticed for a long time, and
il was only after 1924, when this problem was studied in detail by
(+. Hencky, that this criterion for determining the boundary beltween
purely elastic and plastic strains became generally accepted.

It follows that the potential energy stored during the elastic
deformation which tends to change the shape of a given body without
changing the volume must be a completely defined quantity
independent of the nature of the state of slress.

The potential energy of elastic distortion Ay is found as the differ-
ence:

Ag = Ay — Ay (I.59)
where A, and A, are, respectively, the total polential energy of
elastic strain, and that part tending to pro-

duce volume change.

Let us refer these values of potential energy to a unit volume of
the body being deformed.

The total elastic strain energy in the case of a complex stale
of stress is delermined from the equation

dAt == Oy dex - Oy dey + 0, dez - Txy dY;ry 1 Taz dY:xz -+ Tyz dez
Substituting the values of the elastic strains

1 .
Ey == f [OI_P" (Gy i GZ)]
1 .
&y 5 fo, —p (0x-1-02)]
€, "’-E‘[Gz_l"(ox "i‘o'y)] .
1 (1.60)
Yxu ™ 7 Tay
1
sz = —E Txl
1
Yuz:_G-TUZ J
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we oblain

Ae gploi= oy oi=2p(o0,  0.0: 1 0,07)] -

T:zry | T?cz T?;: )
2 g g (16D
The energy tending lo produce volume change is
AV \
A, - 2L (1.62)

where p is the mean pressure (stress), and
AV is the change in the volume.
Since according to (1.27)
Ox ;'01/’+'Gz

p O -~ 0
J
and the volume dilalation AV can be expressed in terms of the stresses
from equations (1.60):
L . 1—2n
AV evie, g, N

((Tx ‘%‘ Uy } 02)

we obtain

. Ty i o)
A, ,] ‘Zp\/(xlo‘y‘l 2)

o . (1.63)

Substituling these values ol A, and 4, into equation (1.59) we have:

1 2 - . ‘ , |
Ay = splor- oy 02 —2u (040 - 040, - 0y0;)] -
1 2 3 . o2 1—2u .
. _)‘_(’T (T.;'y"“r‘\'z ‘—TUZ)——GT- ((7.\' - Gy 01)2
oy |- . .
l'aking the Lerm _TFLL outside the brackets, and noting that
1w
20 I

we obtain
A Tl a0 2 . 3 (72 2 2
d = Tap [o% Oy 0;— 0,0y, —0x3;,— 0,0, « (Txy ©Tyzr Tyz)]

(I.64a)

This value for the potential energy of elastic distortion, for given
mechanical properties of the metal, must be fully defined and inde-
pendent of the stress state during plastic deformation. That is, the
value of A, for a particular metal must be the same to produce
plastic’strain, both under a complex state of stress and, for example,
under a simple compression or tension, when 0, =: ¢, and the remain-
ing stresses 0,, 0,, Ty, Tx;and t,, vanish, so that equation (I.64a)

3*
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assumes the form

14 ,
Ay = o (1.64b)

liquating the right-hand sides of equations (I.64a) and (I.64b)
and multiplying them by two, we obtain the fundamental equation
of plasticity, which is analogous to (1.52) and (1.57) obtained above:

(0x—0,)%+ (0x —07)? - (0, — 07)* 6 (T3 = Tar - Ti2) =205 (1.69)

When the normal stresses appearing in this equation arve directed
along the principal axes of s{ress, the equation becomes identical
with equation (I.57).

The evaluation of the potential energy ol the elastic distortion
testifies to the fact that the fundamental equations of plasticity (I.52),
(I.57) and (I.65) have a well-defined physical meaning.

The criterion constituted by these equations is thus based on the
potential energy of elastic strain which tends to produce a change in
shape; when this potential energy reaches a certain value plastic strain
will take place.

14. ANALYSIS OF THE FUNDAMENTAL EQUATION
OF PLASTICITY

The main advantage of equation (I.52), or (1.57), in
comparison with equation (I.47) which represents the maximum
shear stress theory, consists in the fact that it takes into account the
effect of 0y, i.e., the effect of the intermediate principal stress pro-
ceeding from the assumption that

Gy 2> 02 > O3

In order to clarify to what extent o, has an influence on the stress
relationships for a plastic strain, we introduce into equation (I.57)
the auxiliary quantily:

a; - 03
Og 5
01— 03
2

(1.66)

sl
l

Since 0, can vary from o4 to o4, the quantity & lies between the
limits —1, when o, = 0,5, and -1, when 0, = 0.
From equation (I.66) we find

04— 03 (71~1<0'3
Oy~ E 2 %7 é

We substitute this value of 0, into equation (I.57).
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Then the equation of plasticity can be represented in the follow-
ing form:

CED) (6,— a2 20 (1.67)
or
gy — 0 - V;jagz (1.68)
Depending on &, the coefficient = varies along a parabolic
T

curve (Fig. 15). When § == —1 or E —’—1 this coefﬁment isunily,
and when § = 0 it attains the maximum, equal to — V_ ~ 1.15.

%G-C3__ 2

Ua TV3e&?

N|§

N
e

R . 01— O:
Fig. 15. Effect of o,0r & on 2
a

The following three important conclusions may be drawn from
this analysis:

(1) when 6, -~ 03 0r 6, 0y, the fundamental equation of;plas-
ticity coincides with the equation obtained from the maximum shear
stress theory:

Gy — 03 -~ Ga
(2) the intermediatle principal slress has only a slight effect on the
relationship between the stresses for plastlc strain, the ratio of Lhe

stresses lying within the limits of 1 and % (i.e., 1 and 1.15);

(3) in a simplified form the fundamental equation of plasticity can
be expressed as follows:

D)

0g= ————0,
ysre

gy —
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where the coefflicient & is calculated as dependent on ¢, according
to equation (I.66).
To determine Lhe coefficient

= the graph shown in Fig. 15

can also be used.

15. THE EQUATION OF PLASTICITY FOR A PLANE STRAIN

In this case we assume that there is no strain in the direction
of the z-axis. Then
Tz =Ty, 0
Ox =0y
O; ———

We substitute these values of the stresses inlo equation (I.65):

(0x— 0yt L 4Ty 0l Ak (1.69)
or
' ]/ ) - (1.70)
where
ke - T/% ~ 0.570, (1.71)

When the direction of the stresses o, and o, coincides with the
principal axes of stress, the equation ol plasticity assumes the
following form:

0,—03 2k (1.72)
In the case when 0, == —o0, the normal stresses are zero on the

planes of maximum shear stress. This particular case ol plane strain
is called pure shear.
Substituting this value of o, and 1., 0 into equation (1.69),
we obtain
Oq
VT
Hence it follows that in the case of pure shear plastic strain occurs
when the shear stress equals

IS

Oy -

T ~ 0.57 o,

o~
Vi
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In view of the fact that this quantity has a definile physical mean-
ing, we shall subsequently use it lo characterize the resistance of
different metals to plastic stirain.

In particular, the resistance to strain in the case of two-dimen-
sional simple compression equals 2k, i.e., twice the value of the
resistance to the pure shear.

16. THE INFLUENCE OF THE MEAN STRESS
ON THE SHEAR STRENGTH

The equations given above characterizing the stress relation-
ships for plastic strain are based on the convention that the funda-
mental criterion for evaluating this stress relationship is the
aitainment of a definile energy of distortion. Thus, the above
stress relationship for a plastic strain depends only on octahedral
shear stresses, whilst the octahedral normal stress does not affect
it. This conclusion is supported by numerous experimental inve-
stigations.

But according to the investigalions of P. Bridgman, as well as
L.. Vereshchagin and IX. Zubova, in cases where the mean siress
considerably exceeds the resistance to strain, the shear strength
increases with further increases in the mean stress. Thus P.
Bridgman discovered that the limiting shear strength for steel
1045, when the mean compressive stress was 72 kg/mm?, increased
by 19.3%; when the mean stress was 250 kg/mm?2, it increased
5.35 times. For lead the limiting shear strength increased from 0.9
to 3.7 kg/mm?, i.e., 4.1 times, for a mean compressive stress of
250 kg/mm?2.

The results of the investigations of P. Bridgman into the shear
strength of a number of metals under pressures of 50,000 kg/ecm? and
25,000 kg/cm? are shown in Table 1. For most metals the shear
strength is 5 to 10 times greater, when deformed under a pressure
of 50,000 kg/cm?, than when deformed under the usual conditions
under almospheric pressure.

L. Vereshchagin and E. Zubova, whilst investigating the shear
strength of different metals, drew attention to the fact that under
high pressures the shear strength depends not only on the value of
the pressure but also on the ordinal number Z of the metal. From
their experiments they inferred that the shear strength under high
pressures depends only on the number of outer electrons, and not
on their total number in the atom; it does not depend on the type of
the crystal lattice.

To take into account the effect of the mean stress on the shear
strength when calculating the stresses for plastic strain (two-dimen-
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Table [

Shear Strength of Dilierent Metals Under Pressures
of 50,000 and 25.000 kg/cm?

Limiting shear strength, kg/cmz2,
under a given pressure, kg/cm?2 Breaking strength
under atmospheric

Metal pressure, divided
50,000 25,000 by 2. kgfem2
Aluminium 3,100 1,800 300
Lead 680 370 90
Cadmium 1,900 1,100 320
Cobalt 6,300 3,200 1,230
Iron 12,000 6,600 1,230
Gold 4,500 2,400 700
Copper 4,900 3,000 1,050
Magnesium 870 730 980
Nickel 8,700 4,000 1,050
Silver 4,700 2,600 650
Zinc 1,800 1,050 880
Tin 770 510 130

sional) we have to use an equation of the form
0;— 03=[2k + (04 -+ 03) tan a] (I.73)
where o is the angle characterizing the increase in the shear strength

(Fig. 16) for an increase in the mean stress, which is
determined on the basis of experimental data.

g, - T3
7

[04

\\z f
o) | o A
—— \/

Fig. 16. Effect of mean stress on shear strength

But this equation cannot be recommended for practical calcula-
tions owing to the fact that adequate experimental data for the coeffi-
cient o are lacking.



AND STRAIN 41

17. DIFFERENTIAL EQUATIONS OF EQUILIBRIUM

Let us isolate from the body being deformed an element in the
form of a rectangular parallelepiped with the sides equal to dz,
dy and dz, and let us consider its equilibrium (Fig. 17). If the faces
of this parallelepiped do not coincide with the planes of action of the
principal normal stresses, then the stresses on each face are expressed.

<

0Ty,
Tyz + gz 0z

z | P 071

zdr(?? : ‘l T, Czx g - e Va}/_ydy
Tre GHtda \’\T L)
‘ [/ !

dty.
LTyt

01‘ d$

Fig. 17. The stresses acting on a parallelepiped

in the form of three vectors orientated parallel to the coordinate axes:
one vector expressing the normal stress and the two remaining vec-
tors, the components of the shear stress.

The variation of the stresses over the sides dz, dy and dz of the
parallelepiped can be expressed by means of the partial derivatives.
Thus, for example, if on the face of the parallelepiped coinciding
with the planc yz the normal stress is equal to o,, then on the oppo-
site face, at a distance dz from the origin, the normal stress is

Oy - ﬁ“— dx
The remaining stresses acting on the faces of the pdmlleleplped
at distances dz, dy and dz from the origin may be found in a similar
way (see Fig. 17).
Projecting the forces acting on the parallelepiped on to the z-axis
we obtain

0Ty, ,
<0x—}—%d1‘> dydz—o.dydz (Txy - ;;J dy) dx dz —

— Ty drdz -+ <sz'§" d;fz dz) drdy— 1., dxdy- 0
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Simplifying this (removing the parentheses and cancelling dzdydz,
the volume of the clement counsidered) we obtain the equation of
equilibrium:

5 0T,

90x . 9Txy 0Ty, -

ER R P -0 (1.74)
The remaining two equations are obtained similarly:

90y OTyy | 0Ty,

dy e 0z

s, | 0ty , 9Ty

LX)

dgz ' dxr ' Oy

1f one of the normal stresses, say o,, is constant, so that we have
a two-dimensional or plane state of stress, then
0Ty, 9Ty, B
dz 9z
and the third equation becomes an identity. The equations of equi-
librium in this case are

d0y . Ityy

ar | dy

_ , (1.75)
aay, 0Tyy 0

ay dr

18. SIMULTANEOUS SOLUTION OF THE EQUATIONS OF EQUILIBRIUM
AND THE EQUATION OF PLASTICITY

To investigate the distribution of stresses in the case of two-
dimensional plastic strain we make use of three equations:
(1) the two differential equations of equilibrium [see equations
(1.75)1:

90 . OTay 0
dr 0y

and
doy, | 0Ty 0
gy U or

(2) the equation of plasticity [sce equation (1.70)]:
[(Ox— Oy N2, 2
{\ 2 > ’:'Tiy h?
In these three equations the unknown quantities are a,, o, and

'T_\.y. Thus, the study of the stress distribution for two-dimensional
strain is a problem which, in principle, is statistically determinate,
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and for an ideally plastic solid it can be solved without taking
the deformations into account.

To solve these equations we introduce a quantity ¢ which indicates
the orientation of the plane of the greatest shear stress relative to
the coordinate axis.

y

]

im
x=g-p o,

Fig. 18. Trajectory of maximum shear stress

We assume that in the deformed body the trajectory of the greatest
shear stress (Fig. 18) is expressed in the form of a cylindrical surface

T
F‘\\Q ©
~
5
‘ W
a
C73 X A
o Lo
*‘6
g
S
Oy
- Y
T |
Ox 1
—
9

Fig. 19. The stress circle

AB. The stresses which arise in the elemental triangular prisr
touching the trajectory of the greatest shear stress are expressed by
equation (I.70) in terms of the angle ¢ hetween the tangent to the curve
AB and the z-axis.

The stress circle is drawn using the coordinates ¢ and t (Fig. 19).
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The radius of this circle equals the quantity %, since it represents
the maximum shear stress for a two-dimensional strain, whilst the
distance of the centre of the circle from the origin equals the mean
stress:

Oy 0y =0, Ox1 0y a1+ 03 -
Om - 3 s B 9 (Ilf))

The diametral line drawn at the angle 2a ,,% — 29 to the

z-axis gives the value of the stresses on the surface of the triangular
prism:

Ox Om - , -k cos 2(1 w2 O ,,‘! l sin 2(P ]
0y == Ok cos 2a - 0, —k sin 2¢ | (L.77)
Tyy - ksin 2a.: —kcos 2¢ J

We lind the partial derivatives of these stresses:

Jday 90m )

P PE 2k—cos 2¢q
a6
Ty 9%m 9p 99 e 2¢
ay 9y a9y { (1.78)
AO)
0T 7
T 2k P gip 2¢
[7xa Jr
()Tw F]
) ) N T
7y k 7y Sin 2 j

Substituting these partial derivatives into the equations of equi-
librium (1.75), we obtain the equations of Lévy (France, 1871):

0;1"’ - 2k ( P cos 2¢ - X sin 2(p/ 0 ]l

1.79)
Im  o. L 0Q . o 0 ( (
ng- 2k '\0_(5 sin Zq,—%cos 2(p> 0}

For a sysltem of coordinates £ and y, these equations give the value
of the angle @, i.e., the direction of the greatest shear stresses.

19. CHARACTERISTICS AND SLIP LINES AS A METHOD
OF DETERMINING STRESSES

Both equations (I.79) contain the two unknown quantities o,
and ¢; hence there exist sufficient conditions for determining the
stresses. But the solution of these equations, since they involve partial
derivatives, is a difficult matter. For this reason in solving these
equations their characteristics have to be determined.
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This method of determining the characleristics is highly appro-
priate, since the charactleristics in question—as will be shown
later—have an important property: they coincide with the trajec-
tories of the greatest shear stress.

This circumstance is very important since plaslic strain mainly
hecomes apparent in shear or slip along the planes of action of the
greatest shear stress. This statement may be proved experimentally by
using a polished cylinder under tension. As plaslic strain begins the
surface of the cylinder shows shear or slip lines inclined at 45° to its
axis; these lines are called the Liiders-Chernov lines. Consequently,
the characteristics of equations (I.79) indicate not only the position
of the trajectory ol the greatest shear stress, but also the position
of these shear or slip lines (surfaces).

In photoelastic investigations these characteristics are defined by
the isochromatics.

One possible method of integrating equations (1.79) is to find
their charactleristics by the method suggested by S. Khristianovich
(U.S.S.R., 1938).

Using this method, following V. Sokolovsky and L. Leibenzon,
we assume that the equation of the trajectory of the maximum
shear stress has the form:

y i@ (1.80)

Along this curve the following differential relations must hold:

00”1

9oy, ,
do, - - T’” dx - 7

dy ]
' 1.81)
a ) ' (I.¢
deg :f'%a’xa- 0—(; dy J
We solve equations (1.79) and (1.81) for the four partial deriva-
tives:

Jday,  dop, L)qg o
ar dy ox dy

The auxiliary notations are introduced:

Ni==donpdycos2¢ —doy,dzsin 2¢ — 2k dy dg

Nj== _domdy |

B .82
2% (1.82)

dodzsin 2¢-i-de dycos 2¢

]\74 _ dopdz

Ny—=dopdysin2¢ — do,, dz cos 2¢-- 2k dz d¢ ]
'}
4 de dxcos 2 -t-do dy sin 2¢ I

S 2k
D=2 (dycos ¢ —dzxsing)(dysing-- dxcos ¢) (1.83)
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Then the requirved derivatives are
dom Ny 00,  No  dp N3 dp NV,

iz D ay D dx D gy D (1.84)

If in these equations the numerator and denominator simulta-
neously become zero, then along the curve expressed by equation
(1.80) the values of the derivatives become indeterminate, i.c.,
not unique, and the curve y -= f (z) will be the characteristic of the
system of equations of Lévy (1.79).

In order to find these characteristics we determine Lhe conditions
for which both the denominator and numerator in equations (I1.84)
simultaneously become zero.

Equation (1.83) will be zero for the two conditions:

:]J tang  or ://—Z —cot (1.85)

The first condition expresses the fact that the tangent o (he
characteristics forms an angle ¢ with the z-axis, i.e., the same angle
as does the tangent to the trajectories of the greatest shear stress.
This means that the characteristics run parallel to these trajecto-
ries, and since they can be drawn at any distance from each other,
it may be concluded that the characteristics of the differential equa-
tions (1.79) coincide with the trajectories of the grealest shear stress,
i.e., the slip lines or surfaces.

The second condition indicates that there are two families of char-

P . . 4 .
acteristics intersecting each other at an angle of 5 - This second

family of characteristics obviously coincides with slip lines inclined
to the principal axes of stress at an angle of 45° in the opposite direc-
tion.

We substitute the value % = tan ¢ from equation (I.85) into
equations (I.82) and equate them to zero:
N,=dopdztan ¢ (2cos?@9—1)—do,, dz 2singcos ¢ —

—2kdzlangdyp - O
or

N, = —2k tangpdzd ( Im . (p> == ()
Similarly for the remaining three numerators we have:

Ny — 2kdzd ("'" g \ -0

Njy= —-tan(pdxd(zk ' ¢ )*()

N,‘:da:d<7y7-§—(p>:f0
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It follows from these equations that V4, V., Ng and N, are simul-
taneously zero when

o .
d< S ) 0 (1.86)
. { . . -
If we put the value ;[—Z —cot @, also [rom equation (1.85), in
equations (I.82) and then equate them Lo zero, then
GIIL lord
d (—zr—([‘ 0 (1.87)

From equations (1.86) and (I.87) there follows a very important
conclusion:
along slip lines the quaniities

0'” ¢ .const. and (;_’]': — ¢ -consL. (1.88)

remain constant, i.e., along the characteristic or slip line the depend-
ence of a,, on the angle of rotation is specified by the quantity + 2kg,
where @ is the angle of rotatlion of the slip line.

This interesling property of slip lines or trajeclories of greatest
shear stress was discovered by (. Hencky in 1923.

20. PROPERTIES OF SLIP LINES

The interesting property of slip lines considered in the preceding
section, consisting in the fact that o,, varies along the lines with
their angle of rotation, can also be proved directly with the aid
of the equations of Lévy (1.79).

For this we transfer the coordinate axes zy so that they coincide
with the tangents drawn at any point, suppose, at point A of the
intersection of two mutually perpendicular slip lines (Fig. 20).
Then in equations (I.79) ¢ == 0; after substituting « and f for the
coordinates x and y chosen arbitrarily, we obtain

m ok 2 G )

0‘;“ | 21;; | i (1.89)
B B

The left-hand sides of these equations are zero when
O+ 2kg-- const. (1.90)

and
m — 2k@ = const. (1.91)
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Thus along the slip lines o,, depends on the angle of rotation of
these lines.

The other interesting property of slip lines is a geometrical one.
This is sometimes called the first theorem of Hencky.

Let us isolate from the network of slip lines a four-cornered
clement ABDC (Fig. 21) consisting of the two branches AB and CD
of the slip lines of the family «, which satisfy equation (I.90), and
the two branches AC and BD from the family {3, corresponding to
equation (1.91).

Let us calculate the angles formed as a result of rotation of the
slip lines between the tangents drawn to the isolated element at
pthe oints A, B, € and D.

Y

Fig. 20. Transformation of coordinate axes to coincide with the
tangents to the slip lines at the point .4

If we move from point A along the isolated element (in doing so
it is necessary to turn through a total angle of 2x) in a clockwise
direction, then, noting that at cach point B, €, D and A we must

make a turn of 5, We can wrile the following equation:

T n n
27 = Qan- 5+ Pop - T —Pcp 5 — Pac -t S

lel

or
Pap— Pcp = Pac—PBD (1.92)

Consider these angles, calculating by two methods the differ-
ence of the mean stresses between the points A and D according
to equations (I.90) and (1.91). If we proceed from point A to point
D via point B, the difference of the values of the mean stress is

Oma — Omp == (OmA - GmB) 7L (UmB - O'mD) == 2k ((PAB - (PBD)
and il we proceed from point A to point D via point C, then

Oma — Omp = (Oma — Omc) + (Omc — Omp) = 2k (—Qac+ ®cp)
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Since in both cases the difference must be the same, then

Can— QPpp=Pcp—Pac
or

Gas—%cp=¢pp— Pac
Comparing this equation with equation (I.92) we obtain
Pan=¢cp and  Qac=QPmp

This important property of slip lines can be formulated in the
following manner: the angle between the two tangents (Ag), drawn

/

Fig. 21. An element of a slip line network

to two adjacent slip lines at the point of their intersection with any
slip line of another family, perpendicular to them both, remains con-
stant over the entire length of these two slip lines (Fig. 22).

The third interesting property of slip lines is also a geometrical
one. It was also obtained by G. Hencky.

4o-6e2
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The length of an element of a slip line of the family o (Fig. 23),
bounded by two slip lines of the family f§, can be expressed as follows:

a=ryA¢

where ry is the radius of curvature of the element a of the arc, and
Ag is the angle between two tangents to the slip lines f.

Fig. 22. The tangents drawn to two slip lines at their intersections
with the other slip line family, showing the constant angle Ag be-
tween them

We differentiate this equation with respect to b:
17 da
o—b("aA(P)' b
The derivative of the right-hand side of this equation (see Fio. 22)
is
da

% : — L\(P
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Differentiating, we take the quantity Ag as a constant in front
of the differentiation sign and divide both sides by it. We then obtain

drg
= 1 (1.93)

By means of similar derivations we can also write the equation
for rg, the radius of curvature of the element b of an arc:

arg
I8 1 (1.94)

Fig. 23. Dependence of the length of slip line clements on the angle
A and the radius of curvature

For a greater clarity these relationships are conveniently written
in the following form:

Arg= —Ab
Ars— — Aa (1.95)
where Ar, and Arg are the increments of the radii of curvature,
whilst

Aa and Ab are the increments of the distances between
the points of intersection of two adjacent
slip lines with the other family of slip lines.

These two equations confirm that the radii of curvature of slip
lines of one family are proportional to the distances between the
4%
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points of intersection with the slip lines of the other family. Thus,
for example, if in moving along a slip line we arrive at a section
with a smaller radius of curvature, then this means that the slip
lines of the second family will intersect with it more often.

The three properties of slip lines just considered greatly facilitate
their construction and enable us to study and determine the stress
distribution in many cases of two-dimensional strain.

21. BOUNDARY CONDITIONS AND THE CONSTRUCTION
OF SLIP LINES

Let us consider the form of the slip lines at the surface of a de-
formed body.

If this surface is free, and not in contact with the tool so that no
external forces of any kind act on it, then obviously the normal to
this surface will represent the direction of the minimum principal
normal stress o3, which is equal to zero in the given case.

Consequently, the slip lines will be directed to the (ree surface
at an angle of 45°. Here two cases are possible when compressive or
tensile forces act along the surface (Fig. 24a and b).

In the case of contact with the tool many different states of stress
are possible. Let us consider the characteristic ones.

1. Along the contact surface a slip takes place without [riction.
la this case the slip lines will also intersect the surface at an angle
of 45° (Fig. 24c and d).

2. A slip occurs along the contact surface, but owing to the fact
that the specific friction forces are greater than the shear strength
(pu > k), the surface layers adhere to the plane of the tool. In this
case near the surface of the body one of the directions of the greatest
shear stresses is parallel to the contact plane. Consequently. one of
the families of slip lines is langential to the surface, whilst the other
is perpendicular to it (Fig. 24e and f).

3. Friction forces less than the quantily A4 acl along the contact
surface. A slip can occur in this case, but also a complete adhesion
may be observed. Such a casc of interaction wilh the tool is used
very frequently in shaping metals by pressure.

Making use of the stress circle diagram we shall determine the
direction of the greatest shear stresses relative to the direction of
the contact friction forces. 1t is obvious that on the contact surface
one of the values of the normal stress will be equal (o the specific
pressure p, whilst the shear stress v will be equal (o the specilic
friction force (Fig. 295).
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From this it follows that the angle between the contact surface
and the direction of one system of slip lines is

4T
¢ =0.5cos 1—17 (1.96)

When 1 == 0, ¢ = 45°, and when 1 =k, ¢ = 0.
Thus, depending on the ratio t: %, the angle of inclination of
a slip line varies within limits from zero to 45° (Fig. 24g and A).

On | A o

P\

Fig. 25. Stress diagram determining the angle ¢ between surface
friction force T and slip line (p is the specific pressure on the
contact surface)

The mean stress, i.e., the distance from the centre of the stress
circle to the origin, in accordance with Fig. 25, is

Om == p—ksin 2¢ (1.97)

This case of slip lines intersecting the surface is commonest.

When 1 = k the surface layers adhere to the contact surface, the
angle ¢ becomes zero and the case becomes that illustrated by
Fig. 24g.

1f © = 0, the angle ¢ becomes equal to 45° and the case becomes
that shown in Fig. 24c.

22. DETERMINATION OF THE PRESSURE
FOR AN INDENTING PLANE DIE

Using the slip lines method let us consider the stresses which
arise when a die indents a plastically deformed body whose dimen-
sions in the direction opposite to the p'ane in contact with the die
(Fig. 26) are infinite

We assume that the deformation is two-dimensional. The width
AB of the dic is assumed to be relatively small, so that the friction
force along the contact surface can be neglected.



(a)

Fig. 26. Slip lines for the indentation of a die into a body extend-
ing to infinity on one side of a plane (a), and the position of the
stress circle for the portions AC and AB (b)

-
] g

517/7

Fig. 27. The angle of rotation of a characteristic emerging [rom
the contact surface to the free zone

——
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In accordance with the case considered above (Fig. 24c), the slip
lines approach the contact sucface at an angle of 45°. Owing to the
fact that the strain extends to the zones AC and BD adjoining the
die, the slip lines will also occur in these zones, and, according to the
scheme shown in Fig. 24a, they must approach the free surface also
at an angle of 45°. Joining all three parts AB, AC and BD of the
slip lines into a single system, we obtain Lhe network of lines shown
in Fig. 26c.

The stress cirele for the parts AC and BD touches the t-axis
(Fig. 26b) and, consequently, (0,).¢ == k. In passing from the free

surface to the contact surface the slip lines rotate through —2— , and

accordingly on the part AB the mean stress increases by 2k4}:

(om)AB == (Urn)A(7 - 2k %

and the cenlre of the stress circle is displaced along the o-axis coire-
spondingly by sk, From this it follows that the specilic pressure
along the contact surface is:

peknkk k20 =514k (1.98)

This result is of greal practical importance; it testifies to the con-
siderable effect of the outer zones, i.e., the zones localed close to the
contact surface, on the resistance to deformation during compres-
siom.

In the process of conventional upsetting, if the effect of the contact
friction is neglected, the resistance to strain would be 24. In this case,
owing to the presence of the deformed portions AC and BD the re-
sistance to deformation is 2.57 times greater:

a4

p <’1+7>2kx2.57 (2k) (1.99)

This result largely explains why the hardness of metals, obtained
from indentation tests by a sphere (equal Lo the specific pressure on
the contact surface), is on the average 2.5 to 3 times higher than the
yield stress.

In the case where the die is indented in a plane located in a hollow
as shown in Fig. 27, the angle of rotation of the characteristic when
it passes from the contact surface to the free portion is increased
with a corresponding increase in the specific pressure:

p=2k (143 4y (1.100)

where y is the additional angle of rotation of the characteristic
(Fig. 27).
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Internal

and Surface Stresses

in Rolled Metal

1. DISTRIBUTION OF THE STRESS AND STRAIN
ACROSS THE THICKNESS OF A ROLLED STRIP

Many experimental and theoretical investigations have studied
the distribution of stress wnd strain across the thickness of a rolled
strip.

As a result of all these invesligations we may confidently assert.
the non-uniform distribution of the strains, stresses and velocities:
of motion of a rolled strip across its section. The theory of plane:
sections, which arose out of the theory of rigid ends and which is
widely used in scientific literature, was found to be untenable as:
a result of this work.

The results of these investigations also showed that the stresses:
and strains extend over certain portions of the rolled strip, over the
so-called zones, which are adjacent to the geometrical zone of strain
boeth on the entry side to the rolls and on the exit side.

We consider the problem of stress and strain distribution across.
the thickness of the strip heing rolled, assuming that the rolling takes.
place between smooth rolls, and that the strip is very broad in rela-
tion to the length of the arc of contact and to the depth of the strip.
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Consequently, the effect of spread may be neglected and the problem
can be considered as two-dimensional.

The solution of this problem assumes two different forms dependent
on the ratio of the arc of contact [ to the mean depth %,, of the cross
section of the rolled strip. When the ratio I : z,, > 0.5 to 1.0, the
nature of the non-uniformity in the distribution of stress and strain

- g= Ur +
AT

Fig. 28. Horizontal projection of the peripheral roll velocity

across the thickness of the strip differs considerably from rolling
with the ratio I : A,, << 0.5, when the compressive strain does not
penetrate the entire cross section of the metal being rolled. Let us
consider both these cases.

The first case: the ratio [ : h,, > 0.5 to 1.0. The depth of the sLrip
being rolled is not very great in comparison with the arc of contact
and the compressive strain extends over the entire depth of the cross
section.

This case of rolling, for the angles of contact used in practice (not
more than 30 to 35°), is characterized by the fact that the horizontal
projection of the peripheral velocity of any point on the surface of
the roll within the limits ¢ = y to a (Fig. 28) is greater than the mean
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velocity of motion of the strip (v.,), i.e.,

Ur COS @ => Ugpy (I1.1)
where v, is the peripheral velocity of the rolls,
and when ¢ = y the horizontal projection will equal v,p,.
This can be verified by investigating the ratio
Up COS Q— Uy
Vxm
We make the following substitution in this ratio:
hpvpcosy hpv, COS ¥
hy "~ hp+ D (cos y—cos @) (11.2)
where h, is the depth of the rolled strip at the neutral section
h, is the depth of the strip at a given section
D is the diameter of the rolls.
After certain simple transformations

Uxm =

Up COS Q—Ugyy (D COS @ —hy) (COSY—cos¢)
Vo - hy cos 'y

(11.3)

Since for the case considered, when the ratio [ : k,, > 0.5 to 1.0,
practical considerations indicate that

Dcos ¢ > I, (I1.4)

must hold, it follows that for @ > vy the numerator of the above ratio
will be positive, which verifies the inequality (11.1).

Consequently, the friction forces arising between the strip being
rolled and the rolls tend to impart higher velocity to the zones of
this strip adjacent to the rolls at the sections ¢ == y to o than to
the middle portion of the strip; the latter must inevitably, although
very slightly, lag behind (Fig. 29).

As a result of such an action of the contact {riction forces a non-
uniformity in the stress distribution arises across the depth of strip,
and, consequently, a non-uniformity in the distribution of strains
and velocities.

Thus, this non-uniformity in the distribution of the stresses, strains
and velocities of the metal across the depth of the cross section of
the strip must, in principle, be a consequence of the action of the
contact friction forces, whether the metal slips along the surface
ol the rolls or not.

It would be therefore incorrect to assume that the non-uniformity
of strains mentioned above exists only because of the presence of
zones of sticking. Even if we assume that there are no zones of stick-
ing, it does not mean that the above non-uniformity in the distribu-
tion of stresses and strains across the depth of the strip cannot
be observed.
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This non-uniformity in the distribution of strains is strongly resist-
ed by the outer portion of the strip being rolled which is not subject-
ed to deformation and where, in consequence, the velocity
of motion across the section of the strip is distributed perfectly
uniformly. Between this unstrained zone and the contact zone of
deformation there is a zone, located outside the contact, over which
we observe a gradual increase in the non-uniformity of the distribu-
tion ol stresses, strains and velocilies across the section of the
strip.

Z
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Fig. 29. Above: diagram showing the velocity of a rolled strip at
different points in its cross section as it passes through the defor-
mation zone. Below: diagrams showing the velocity distribution for
different cross-sectional depths (I : h, > 0.5 to 1.0):
1—1ihe velocily of the outer portions of the strip cross section; 2—the veloc-
ity of the middle portions of the strip ecross section; 3 —the mean velocity
of the strip cross seclion; «---velocily diagram for the unstrained zone;
s—velocity diagram for the deformation zone at the entry, away from the
~ontact zone; 6--velocity diagram for the zone of backward slip; 7—veloc-
ity diagram for the neulral zone; 8§ —velocity diagram for the zone of for-
ward slip; 9—velocity diagramn for the deformation zone at the exit, away
from the contact zone; 10 --velocity diagram f(or the unsirained zone at the
exit

Since the velocity across the section of the strip in the unstrained
zone 1is distributed uniformly, whilst in the contact zone of
deformation the outer layers of the metal, touching the rolls, tend
to move faster than the inner layers, it follows that in the non-con-
tact zone of deformation, at the cross section where the metal enters
the rolls, there will appear longitudinal stresses. These stresses in
the outer portion of the cross section are tensile, whilst in the central
portion they are compressive (Fig. 30).
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At the neutral section the velocity of motion of the rolled metal
is equal to the horizontal projection of the peripheral velocity of
the rolls, and, consequently, we cai assume that along this cross
section the stresses, strains and velocities will be distributed uni-
formly (see Fig. 29).

Beyond the limits of this section, in the zone of forward slip, the
horizontal projection of the peripheral velocity of the rolls is smaller
than the mean velocity of the metal being rolled, i.ec.,

Up COS @ <Z Uy (I1.4a)

The validity of this inequality can be tested, as for inequality
(11.1), by analyzing the ratio (I1.3).

Fig. 30. Diagrams of normal stress for different cross-scectiona
depths, I : 2, > 0.5 to 1.0 (a negative sign denotes tensile stress,
a positive sign denotes compressive stress):

I-1 and 5-5—seclions at which the stresses arc zero; ?-2—section al the

entry; 3-3 --neutral section; 4-/-—section at the exit

When ¢ << 9 the numerator of this ratio hecomes negative (when
D cos ¢ > k,) which verifies the inequality (11.44a).

Owing to the facl that the mean velocity of the metal in the zone
of forward slip is greater than the horizontal projection of the pe-
ripheral velocily of the rolls, the latter play the role of a brake over
this portion of the arc of contact. Consequently, the zones of the
strip being rolled, adjacent to the rolls, have a smaller velocity than
its middle part which always precedes them a little and gives rise
to a non-uniformity in the distribution of stresses, strains and ve-
locities across the depth of cross section of the strip (see Fig. 29).

Just as in the zone of backward slip, this non-uniformity in the
strain distribution across the depth of the strip in the zone of forward
slip interacts with the outer unstrained zone and gives rise to addi-
tional stresses.
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Tensile stresses arise in the outer layers of the strip, both at the
exit from the rolls and at the entry to the rolls, whilst compressive
stresses arise in its middle part (see Fig. 30). Over the zone of defor-
mation which is not in contact, these stresses and the corresponding
longitudinal strains gradually diminish towards the exit, and become
zero when the unstrained zone at the exit is reached.

The pattern mentioned above regarding the distribution of stresses
and strains across the depth of the strip at the entry and at the exit
is one of the basic laws of the theory of longitudinal rolling. It was
first formulated and theoretically confirmed in 1933 by N. Sobolevsky
(U.S.S.R.). But this viewpoint for a long time found no support in
scientific literature, and, consequently, was little used and devel-
oped. Only comparalively recently, as a result of experimental inves-
tigations into the distribution of deformations across the thickness
during longitudinal rolling, carried out by filming the zone of defor-
mation, first by O. Muzalevsky and then by A. Kolpashnikov, have
the patterns been discovered confirming the correctness of the theo-
retical conclusions of N. Sobolevsky.

This viewpoint received further development owing to the inves-
tigations by I. Tarnovsky, A. Pozdeyev and V. Lyashkov who
studied the change of form of a coordinate network. They also estah-
lished a considerable non-uniformity in the strain distribution across
the depth ol the cross section of the strip being rolled. The changes
in the form of individual elements in a given section relative to each
other far surpass in magnitude the strain approaching elastic strain,
and, in connection with this large non-uniformity in the strain
distribution, the character of the slip of the metal along the
rolls is altered.

The most interesting part of these investigations was represented
in the form of graphs showing the variation of deformation, over the
arc of contact, of individual elements of the cross section of the strip,
near the contact surfaces and in the middle of the strip. One such
graph is shown in Fig. 31. The strain is plotted as ordinates; it is

I} .
expressed by logg /—iQ, where #y and A, represent the height of the
X

elements of the coordinate network prior to entering the rolls and
at any section respectively.

As is seen from this graph, at the beginning of the arc of contact
the strain of the elements located close to the contact surfaces
is more intensive than that of elements inside the cross seclion
of the strip. This testifies not only to the non-uniformity in the dis-
tribution of strain over the cross section of the strip, but also to the
motion of the outer layers having a higher velocity in comparison
with the inner layers. This confirms the validity of the law of veloci-
ty distribution along the cross section mentioned above (see Fig. 29).
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The point of intersection of the curves on the graph obviously
corresponds to the position of the neutral section. To the other side
of it the opposite phenomenon can be observed: the inner elements
of the cross section of the strip experience a greater tension, and
hence have also a higher velocity than the elements next to the rolls.
This is also confirmed by the diagrams of Fig. 29 showing the distri-
bution of velocities across the depth of the cross section of the strip
being rolled.

In the middle portion of the arc of contact—curve 7 (see Fig. 31)—
there is a segment of considerable length lying parallel to the axis

h

Log,o-ﬁi —
> -
S /< el
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Y
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Arc of contact

Fig. 31. Graphshowing the variation of the strain: logy, ;;'—0 of an

element of the cross section along the arc of contact (I. Tarnovsky):

I—near the contact surfaces; 2—in the middle of the strip cross section;
3—Ior uniform deformation of the cntire strip cross section

of abscissas. This signifies that the deformation of the cross-sectional
elements close to the central portion of the arc of contact is slowed
down. Over this part of the arc no slip occurs, and, consequently,
a zone of sticking exists. This is the second very important conclu-
sion, which is based on the results of experimental investigations
by I. Tarnovsky and others, viz., that the non-uniformity in the
strain distribution across the depth of the strip is considerable, so
that a zone of sticking appears in the middle portion of the arc of
contact.

The second case: the ratio [ : h,, << 0.5 to 1.0. As the ratio of the
arc of contact to the mean thickness of the cross section of the rolled
strip diminishes, the effect of the outer zones on the deformation
process becomes more active, and, particularly, the degree of non-
uniformity increases in the distribution of stresses across the depth
of the cross section of the strip.
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10bservations and investigations by a number of Soviet scientists
have established that when the ratio of the arc of contact to the mean
depth of the cross section of the strip being rolled becomes less Lthan
0.5 to 1.0, the compressive strain does not penetrate the whole cross
section of the strip. but is localized in the zones adjacent to the con-
tact surfaces and in the non-contact zones situated close to the former.

In view of the [act that the final elongation of the rolled strip,
i.e., the overall elongation of the metal emerging from the rolls,

)

Fig. 32. The variation ol velocity with depth in the rolled strip
shown at various points along its length. with 7: A, << 0.5 to 1.0
and D cos o0 > Ryt

I —in the unstrained zone; 2—in the deformation zone at the entry, away
from the contact zone; 3—in the zone of hbackward slip; £—in the zone of
forward slip: 5-—iv the zone of deformation at the exit, away from the con-
tact zone; 6--in tne undeformed zone

is nearly the same in both its upper and lower layers and in the mid-
dle, a considerable stretching of the inner portion of the strip takes
place as a result of the elongation during rolling of the parts adja-
cent to the rolls. The tensile stresses then appearing will often lead
to the formation of internal cracks and cavities.

At the entry to the rolls tensile stresses will cause a slight increase
in the velocity of motion of the inner portious of the strip. but at
the exit, conversely, they will cause a slight slowing down.

If at the same time D cos a@ > &,, then the phenomenon described
in the first case of rolling will be partially obscured; that is, the
tendency of the top and bottom layers of the strip to have a some-
what higher velocity when approaching the rolls and. conversely.
to have a lower velocity, when leaving them, will be less marked.

Typical diagrams of the velocity distribution of the metal being
rolled for the second case are shown in Fig. 32.

Over the sections located between the undeformed zones and the
zeometrical zone the strains increase strongly at the entry. whilst
the large longitudinal stresses die down at the exit. Over the central
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+‘“~W7'
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Fig. 33. The distribution of normal stresses across the sections

at the entry to the rolls and at the cxit from the rolls,

with ¢ : &, << 0.5 to 1.0 and D cosa > h, (a negative sign denotes
tensile stress; a positive sign denotes compressive stress)

portion of the strip these stresses will be tensile, but in the top and
bottom layers (which balance these stresses) they are compressive
(Fig. 33). Here it is of interest to note the two opposing processes
when longitudinal stresses arise at the entry and exit on the actual
surface of the rolled strip. When D cos a > A, tensile stresses must
arise owing to the fact that v, cos a is higher than the mean entry

30%  72%  13.5%  184% 179%  274%
%

% 532 144% 207%  [251%

% 7% 7 77 W%

169 .ﬁ 19, 77%|  |262%

’ 2

(a) (6)  (c) (d) (e) (f)

Fig. 34. The distribution of strain with depth when hot rolling a
slab of alloy J{16 with different reductions and different ratios of
l: hy (A. Kolpashnikov):

Index b c d e f
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—m:, % 6.7 12.2 16.9 20.4 25.3
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velocity of the metal into the rolls. But at the same time there is
a tendency for compressive stresses to appear as a result of the metal
being displaced from the contact surfaces, as happens when a die is
pressed into the surface of a large solid.

These trends in the distribution of strains across the depth of the
cross section of the strip being rolled, as already mentioned above,
have been obtained on the basis of a number of experimental investi-
gations. As an example Fig. 34 gives the data on the strain distri-
bution over the depth of the cross section of the strip obtained by
A. Kolpashnikov using high speed photography of the rolling of
a coordinate network marked on the side surface of a slab of alloy
JI16. The slab was rolled in a hot condition with reductions of 2.8,
6.7, 12.2, 16.9, 20.4 and 25.3%. The results of these tests confirm
that over the whole range of these reductions the strains over the
depth of the strip are distributed non-uniformly. For a reduction
within the limits of 2.8 to 16.9%, when the ratio I : &,, =~ 0.3 to
0.92, the deformation of the central portion of the strip is less than
that of the outer layers. This corresponds to the case shown in Fig. 32.
But when the reduction equals 20.4 and 25.3%, with the ratio
L:h, ~ 1.0 and 1.25, the deformation of the inner parts will be
greater than that of the outer layers, and this case of rolling will
correspond to the case shown in Fig. 29.

2. A SIMPLIFIED FORM OF THE DIFFERENTIAL EQUATION
OF SPECIFIC PRESSURE

From the analysis considered above concerning the distribution
of strains across the depth of the cross section of the strip being
rolled we can determine only the laws for the qualitative variation
of stresses. Up to now no analytical relationships for stresses depend-
ent on the factors having an influence on them have been estab-
lished. Ilence the problem concerning the influence of the state of
stress on the specific pressure must be solved by approximation.

We shall consider the case of rolling where the length of the arc
of contact exceeds the mean depth of the cross section of the strip
being rolled. At the same time we shall assume that the rolls are
cylindrical and the width of the strip being rolled is several times
the length of the arc of contact. Accordingly the problem can be
considered as two-dimensional.

Let us isolate from the strip being rolled a certain element abdc
(Fig. 35) bounded by the cylindrical surfaces of both rolls and by
two planes perpendicular to the direction of rolling and separated
from each other by an infinitely small distance dz. We consider the
conditions of equilibrium of this element; accordingly we project
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all the forces acting on the element on to the direction of rolling.
On the right-hand side of the strip the element is acted on by
the force
O3y

where o, is the mean normal compressive force arising in the sec-
tion bd of the strip being rolled, and
h, is the depth of the cross section.
Suppose that in the plane ac the mean normal stress is o, -+ doy,
and the depth of the cross section is 2, -+ dh,. Then on the left-hand
side of the strip the isolated element is acted on by the force

(0x+doy) (hy - dhy)

We shall first consider the equilibrium of the element when it is
closer to the point A than to the point B, i.e., this element is located

i

- Pr¥ [

Fig. 35. Elementary forces acting on the rolled metal in the zone of
backward slip

in the zone of backward slip, and its particles, touching the rolls,
tend to slip along them in the direction opposite to the rotation of
the rolls. The horizontal projection of the forces acting on the ele-
ment from the direction of the rolls can clearly be expressed as
follows:

2 ( dz Si T dz cos
‘p"'cos Px 1 Pz *cos ¢y ¢

where p, is the specific roll pressure on the metal being rolled
@. is the angle between the tangent to the arc ab and the
horizontal plane
T, is the shear stress acting on the contact surfaces which
is caused by the friction forces arising between the
strip and the surface of the rolls.

5*
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The sum of the horizontal projections of all the forces acting
on the element is

WX == (0x -+ doy) (-1 dhy) — 0che— 2p. tan @odz - 2v,dz -0 (I1.5)

The quantitics dr and tan ¢, entering this equation can be ex-
pressed as
dhy

da = 2tan @y

If we substitute this value of dx into equation (1I.5) and neglect
the infinitely small quantities of the second order, we obtain
=:() (T1.6a)

dhy Tye dhy
O — (Px—0x) 3= hy +tanrp\ hiy

When the element abdec is close to the point 5, i.e., in the zone
of forward slip, then the particles touching the rolls tend to slip
along the surface of the rolls in the direction of the rotation of the
rolls. The conditions of equilibrium of this element obviously remain
the same as for the zone of backward slip, only the friction forces are
directed the other way. The cquation of equilibrium for the zone of
forward slip in this case can be expressed as follows:

doy—(px—0y) —3~r'———'—» (I1.6Db)

To solve equations (II.6a) and (I1.6b) it is necessary to find the
relationship between the specific pressure p, and the stress o,. For
this purpose we use the equation of plasticity derived above for a two-
dimensional strain [see equation (I.70)]:

Ox—0y "\ 2 2 ]
<_? ";—T xy - ]L

Taking the verlical and horizontal stresses oy and o3 as the
principal stresses, we may write
0y — 03=2k (11.7)
where
1
J dzx

4 de .
0= <px cos g, 008 P LT o sin gy
The second term of the right-hand side of this equation can obvi-
ously be neglected owing to its smallness in comparison with the first
term. Then
01=px and  03=0,

From this, according to equation (I1.7),
px— 0y =2k (11.8)
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Substituting this value of p, — o, into equations (Il.6a) and
(I1.6b) we obtain the fundamental differential equation for the spe-
cific pressure:

. o Tx dhy
d (pe— 2K) <2k T %) o (11.9)

The minus sign in {ront of the second term on the right-hand side
of this equation refers to the zone of backward slip, whilst the plus
sign refers to the zone of forward slip.

The constants obtained as a result of integrating equation (I1.9)
are determined from the initial conditions. For this we find the
specific pressure at the points A and B. We take the more general
case, when the strip being rolled is subjected to tension at the entry
to the rolls and at the exit from them, which in practice is often
observed with cold rolling, and also when rolling is carried out in
continuous mills. The tensile stresses arising in the strip as a result
of its tensioning are denoted by o, at the entry to the rolls, i.e.,
when x = [, and by o at the exit from the rolls, when z = 0. Then,
in accordance with equation (I1.8), the specific pressures are:

at point A,

pa=—2k—04==52k

I.10
pp=—=2k—op-=8.2k a )

at point B.

When tension is absent the specific pressures at the points A and B
are equal to the quantity 2k.

The subsequent solution of equation (II.9) may be carried out in
two ways: (1) the value of k& varies along the arc of contact, and
(2) the value of this quantity is constant. A variation of the quantity
k along the contact surface during the rolling is possible owing to the
hardening of the metal, the different strain rates at the beginning
and the end of the arc of contact, and, consequently, the strength,
as well as the variation of the temperature of the rolled metal in the
direction towards the point B.

V. Smirnov has considered the solution of the equation of specific
pressure, assuming that the variation of the quantity %, due to the
cold working, is according to the equation

- . hO n
Dx— 0y =~ v2k <E>

where v and n are coefficients depending on the hardening charac-
teristics of the metal.

Having made a detailed analysis of the results of his solution

V. Smirnov arrived at the conclusion that if instead of the variable
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value of k its average value is taken, i.e.,
h—taths (I1.11)

where k4 and kp are the values of % at the beginning and
end of the arc of contact,
then the accuracy of the solution of the equation is not substantially
altered.
Taking into consideration this circumstance, let us solve equation
(I1.9) with a constant value of & along the arc of contact as given by
equation (II.11). Then in accordance with equation (II.8)

do,=dpy
The differential equation of specific pressure is
. Ty dhy
dpy— <2k F i ) (11.12)

The general solution of this equation in exact form gives rise to
difficulties owing to the inadequate definition of the relationship
between p, and t,. Below we shall consider certain characteristic
cases of friction arising between the metal being rolled and the
surface of the rolls.

3. SPECIFIC PRESSURE IN THE CASE OF SLIP
WITH DRY FRICTION

In the case when the metal being rolled slips along the surface
of the rolls with dry friction the force of friction can be expressed
as follows:

T=UPx

After substituting this value of 1 into equation (II.12) we obtain

the equation of von Karman:
— MKDx dhy
dpx = ( 2k F 1 =) (11.13)

The variable quantities %, and @, appearing in this equation are
determined by the coordinates of the arc of contact (Fig. 36). The
equation of a circle which represents the cross section of the roll is

4 (y—a)P=r?
where y and a are the distances along the vertical, from the axis
of the rolled strip to any point on the surface
of the roll and to its axis respectively (Fig. 36),
and
r is the radius of the roll.
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From this we find

eVl
dr — —y—ady
SV D

tan @, = Z—z = _‘\/rZy—iya—a)‘l

After substituting this value of tan ¢, into equation (I1I.13), and
noting that }%’ ==y, we obtain
2k dy ppx (y—a) dy
dpy = F
P yVrEi—(@y—a)?
This equation can be solved if we introduce the integrating factor

(11.14)

N S u(y—a)dy
e < yVri—(y—ap2

Subsequently, however, the integral
a2—r2

ry _a) dl/

a

—e Vaz=r2 Sin_l(
y

appears in the equation, and can be evaluated only by expanding

the integrand in a series. The final results obtained thereby are

cumbersome and not completely accurate.

. y—a
-1 - _
S q Msin -

Fig. 36. Determination of z and %—‘5

Since the angle of contact of the metal in a majority of cases does
not exceed 20 to 30° for hot rolling and 4 to 8° for cold rolling, it
can with sufficient accuracy be equated to a curve for which the solu-
tion of equation (I1.13) is simplified.
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This method of solution should also be chosen because in cold
rolling, owing to the high specific pressure, the rolls are subjected to
a considerable local compressive strain, with the result that in prac-
tice the arc of contact will not be an arc of a circle.

Below we shall consider the two simplest solutions of this equation:
in the first case we equate the arc of contact to a parabola; in the
second we equate it to a chord.

For practical calculations both of these solutions may be consid-
ered as completely accurate.

We equate the arc of contact to a parabola whose vertex is located
at point B and whose side passes through point 4 (see Fig. 36).

The equation of this parabola has the form

Ny = ax? -

When the curve passes through points A and B, the counstant coef-
ficients ¢ and b will be

Al
a:—lT

— 1 and b--4,
where [ is the horizontal projection of the arc of contact, and
Ah is the linear reduction.
We further find that

2A} d
dhy = 2ax dx = lzl zdr - 2z dz
dhy
tan @y == 5de - 4%

We substitute these values of %,, dh, and tan @, into equation
(I11.13):
2dzx

dp. = (2akz + pp.) e (11.15)
We introduce the new variable u:
= Vi tanu
a
Then
o @ dz
u==tanlz l/i du == 4@z
b b 1+% 22

whence
dzr . du
az?+b = V/ab
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After substituting the value of u into equation (II.15) we obtain

WMpx . I1.16

Instead of p, we introduce two new variables:

Px == UL

dp.—4ktanudu 4

Then
dpy=tdv-tuvdt

Substituting these values of p, and dp, into equation (II.16), and
also denoting

2
va "
we obtain
tdv-+vdt—4ktanudu + motdu=0 (I1.17)

We assume that the variable quantity ¢ just introduced satisfies
the condition
dt-+-mtdu=0 (I1.18)
Then
logt-= —mu
or

t=¢m" (11.19)
Substituting the expressions (II.18) and (I1.19) into equation
(I1.17) we obtain
e ™ dv =4k tanu du

After integration we have

v==4k S e™tanudu--C
or

pase [ 4k (™ tanudut C | (11.20)

The integral in this equation can be calculated only approxi-
mately, as a result of expanding one of the integrands in a series.

For low and medium reductions, when Ak does not exceed #,
and u <71, we obtain the convergent series for tan u:

u3d 2ud
tanu =u - 3+3><5""

Substituting this value of tan u into equation (I1.20), p, can be
calculated by means of term by term integration with any accuracy,
depending on the number of terms of the series used.

In the given case we confine ourselves to a calculation of tan u
for small reductions, when the convergence of the series obtained
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is so rapid that we can limit ourselves to its first term. Then equation
(I1.20)
for the zone of backward slip assumes the form

pa=Cot™™ — % (1 — mu) (11.21)
whilst for the zone of forward slip this expression is
px:Cie’"“—%l;—(i -+ mu) (I1.22)

The constant quantities Cy and C; in these equations are deter-
mined from the initial conditions.
At the point A, where z = [,

px:2k—04
u=1uy=tan™! —?i
Q!
at the point B, where z = 0,
px=2k—03

u=20
Substituting these values of p, and u into equations (I[.21) and
{11.22) we obtain

2
Co==2k [Eo T (1= muo)] emne

Cro=2k (B + 7 )

where

1094 g .-4_9B
Eo=1 2% and g, =1 T

After substituting these values of Cy and C, into equations (I1.21)
and (I1.22) we obtain the final expression for the specific pressure
in the zone of backward slip:

pa—=2k { [ 8+ g (1—mug) | emttom — 2 (1 —mu)}  (11.23)

whilst in the zone of forward slip

2 mu 2 !
po 2k (&4 oy ) o™ — oy (1imu) | (11.24)
where
o2ul
~ Vhah
ug= tan™! Ak

“hy
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(]/ Ah J:
u=tan™!
Iy

According to these equations the minimum specific pressure is
observed at the points A and B; towards the neutral section this
pressure increases (Fig. 37). The maximum specific pressure
occurs close to the neutral section where both the pressure curves
expressed by equations (11.23) and (II.24) intersect.

A
Al

" \

~1
[ 1)

and

N
[ \N
4y
R~
o~
A~

Fig. 37. The distribution of the specific pressure along the arc of
contact during slipping with dry friction v = pp,

Tselikov's equation. If the arc of contact is equated to a chord
passing through the points A and B (Fig. 37), or to two chords (AC
for the zone of backward slip, and BC for the zone of forward slip),
the solution of equation (I1.13) is considerably simplified. The final
results obtained in this case are simpler and hence more suitable for
practical calculations. The discrepancies arising from this assump-
tion—as comparative calculations have shown--are quite insignifi-
cant. In particular, for medium and high reductions, and also for
angles of contact which are less than the angle of friction, this method
of solution gives considerably more accurate results than calculations
based on equations (I1.23) and (II.24).

In conjunction with this, taking in equation (II.13)
a-ty

2

tan @, = tan
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for the segment AC, and

tan ¢, = tan %
for the segment BC,
we obtain

dhy

dpx = (2k 60 x) —/‘\—

for the zone ol backward slip, and

dpy == (2k+8,py) “hx

for the zone of forward slip,
where

8- —b— 8
tan ——

After integration we obtain

—bo 2k
p.l "COh + (Sg
for the zone of backward slip, and
2k
Px = C /l —_ Fl*

for the zone of forward slip.
The initial conditions are:

DPx= Eozk
when A, == hg, and
DPx= §12k
when h, = h;.
From this we find Cy and Cy:
Co— 2k (Bo— 5 ) "

Cy-=2k (gl -+ %) hi_61

(I1.25)

(11.26)

(11.27)

(11.28)

(11.29)

(I1.304)

(I1.30b)

Substituting these values of Cy and C, into equations (11.28) and
(I1.29) we obtain the final expressions for determining the specific

pressure:

pa g | @abo—1) (2)"41]

(I1.31)



STRESSES IN ROLLED METAL

~1
~1

for the zone of backward slip, and

2/ I
o | @0y (32) =1 (I1.32)
for the zone of forward shp,
where
fo=—F —— 8= —H_ (11.33)
’ an% 1 tan‘l)v

If the metal is rolled without tension and no external forces, with
the exception of that of the rolls, act on the strip, then the values
of 04 and oy, where h, == hy and h, == h,, are zero. Then equations
(I11.31) and (II.32) assume the form:

P Go—1) (42)"i 1 (11.34)
for the zone of backward sllp, and
p:x . 2/\, [ 61 ES 1) < hx >61 7 (I[.35)

for the zone of forward slip.

I't follows from the analysis of the preliminary law describing the
distribution of the specific pressure along the arc of contact that this
pressure depends on a number of factors: the coefficient of external
friction, the depth of the strip being rolled, reduction, the diameter
of the rolls and, finally, the tension of the strip being rolled at the
entry to the rolls and at the exit from them. To illustrate the
nature of the influence of these factors on the specific pressure
Figs. 38, 39, 40 and 41 show diagrams giving the distribution of this
pressure over the arc of contact; these have been plotted from the
data calculated from equations (I1.31) and (I1.32), (I1.34) and
(IT.35).

Fig. 38 shows the thceoretical distribution curve of the specific
pressure along the arc of contact (under its horizontal projection [)
in the case of rolling of wide strips with the same reduction of 30%
but with different coefficients of friction (0.075, 0.1, 0.15, 0.2, 0.3
and 0.4). As is seen from this curve, the coefficient of the external
friction exerts a very great influence on the specific pressure. The
greater the coefficient of friction the greater the increase in the spe-
cific pressure in the direction of the neutral seclion, and, consequently,
the greater the overall pressure of the metal on the rolls during the
rolling.

Figs. 39 and 40 show similar curves, but representing the distri-
bution of the specific pressure along the arc of contact in the case of
rolling a wide strip with different reductions and with rolls of differ-
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Iy
D
cal conditions. Analyzing these curves we note that as the length
of the arc of contact increases (when its length is greater than the
mean depth of the cross section of the strip being rolled) and as the
depth of the strip diminishes, the mean specific pressure will increase.
s

Py

4

ent diameters (i.e., with different ratios) under otherwise identi-

Direction
—
of rotting

Horizontal projectionof arc o
contact (

Fig. 38. Theoretical distribution curves of the specific pressure
along the arc of contact (with 7 == pup,) for two-dimensional

rolling with different coefficients of friction (\/l/i = 30%; o= 5°40’
to

h N
and -1+ =1.169%
D 0

Consequently, the overall pressure of the metal on the rolls in this
case will increase not ouly as a result of the increase in the area of
contact between the metal and the rolls, but also as a result of an
increase in the specific pressure itself.

This preliminary law for the distribution of the specific pressure
along the arc of contact also enables very important conclusions to
be drawn about the effect of the back and front tension of the strip
on the pressure of the metal on the rolls during the rolling. To illus-
trate the character of this effect Fig. 41 shows the theoretical distri-
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bution curves of the specific pressure along the arc of contact when
wide strips are rolled with different tension [for o = 0; 0.2 (2k)
and 0.5 (2k)]. These have been plotted from the data calculated from
the formulas (I1.31) and (I1.32). Fig. 41a shows the curves when the
tension acts on the rolled strip only from the side of its exit from the
rolls, whilst Fig. 41b shows the case where the rolled strip is subjected

,D__z.
b
44
Direction
bt
of rolling
3 -
2 -

|

Horizontal projection of arc of
contact |

Fig. 39. Theoretical distribution curves of the specific pressure
over the arc of contact (with © == up,) for two-dimensional rolling

with different reductions <%’—L- 0.1, 0.2, 0.3 and 0.5); other-
0 .
wise conditions are identical and work hardening is absent

/ —or
—B— = 0.5% and p = 042>

to tension from both sides: from the side of the entry to the rolls
and from the side of the exit. Comparing the individual curves we
notice that when the rolled strip is tensioned the specific pressure is
considerably reduced. At the same time the greater the tension which
is applied to the metal being rolled the lower will be the pressure
of the metal on the rolls. It should also be noted that the tension
from the side of the metal entering the rolls causes a reduction in the
specific pressure, as does the tension from the exit side of the rolls.

In reality (in particular, when hard metals are rolled) the reduc-
tion in the pressure of the metal on the rolls due to tension will be
yet more considerable than that shown in Fig. 40, owing to the reduc-
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tion in the local elastic compression of the rolls (contact compres-
sion) due to tension, and to a certain shortening of the actual length
of the arc of contact in connection with this.

Equations (I1.31) and (I1.32), in the derivation of which the arc
of contact was equated to a chord, are simpler and hence more
convenient than equations (II.23) and (I1.24). The error incurred
thereby is very small and has no practical importance, except in

&

4 —w%

Horizontal prajection of are of
contact L

Fig. 40. Theoretical distribution curves of the specific pressure
along the arc of contact (with T = pp,) for two-dimensional rolling

with rolls of different diameters <—,111—— 100, 200 and 350>

'
and a reduction of 30% (u = 0.3)

cases where the specific pressure and the specilfic friction forces are
analyzed for various contact angles whose value is close to the angle
of friction or exceeds it. Under these conditions the stress o, varying
along the rolled strip will strongly depend not only on the contact
friction forces, but also on the variation of the horizontal projection
of p.. Accordingly calculations of this kind should be carried out
using equation (I1.23), or the arc of contact should be divided into
several sections (suppose 4 to 6), on each of which the arc is equated
to a small chord and the calculation is carried out using equations
(I1.31) and (I11.32), with different values of & for each section. The
curves of the distribution of the specific pressure along the arc of
contact thus calculated—when the angles of contact are greater
than the angle of friction—have an interesting feature: over the
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segment where
tan @y >p

the coefficient § is negative and accordingly the curves of the specific
pressure on Lhe section from point A in the direction of rolling are
characterized not by a rise, as usual, but by a fall (Fig. 42).

Fir

7k

tangpr>p | tangr <p |
L

Fig. 42. Theoretical distribution curves of the specific pressure
along the arc of contact (with T = pp,) in the case of two-dimen-
sional rolling with different arcs of contact but with the same
horizontal projection of the arc of contact:
1—tan ¢, <7 palong the entire arc of contact; 2—tan ¢, > nat the begin-
ning of the arc of contact

From this we can conclude that if the angle of contact is greater
than the angle of friction or close to it, the specific pressure is less than
in the case where for the same extent of the arc of contact the rolling
takes place for angles ¢, which are less than the angle of friction.

4. SPECIFIC PRESSURE IN THE CASE WHERE FRICTION FORCES
ARE CONSTANT OVER THE ARC OF CONTACT

In the given case it is assumed that the specific friction force is
constant and approximately equal to

T==const. &~ u2k
This value of the friction force was suggested by Siebel.
For this condition the solution of equation (I[.12) is considerably
simplified. As before, we equate the arc of contact to parabolic arc.
Then

hy=—=azx®-+b

dhy=2ardzr and tang,--ax
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where

Ah
a == B

and b -1

After substituting these values ol 2., dh, and tan ¢, into equation
(I1.12) we have

4k ax

— 2tdz
dpx az?--b dz ¥

ax?-i-b

(I1.36)

Denoting z by ]/ﬁ—z z and then integrating we find the specific

pressure

Px=2klog.(z*-+-1)— VE tanlz-'- C, (11.37),

for the zone of backward slip, and

Px = 2klog, (2% -1 1) - tan1z - C, (I1.38)

l/u
for the zone of forward slip.

From the initial conditions when z = z; and z = 0 we find the
constants Cy and Cjy:

Co—~ 2k [Eg— log, (22 - 1)] + —= tan™1z, (11.39)
Vab
C == 2kE, (I1.40)
According to equations (11.37) and (I1.38) the specific pressure is
D= 2k (go—logeé‘jii) L2 ]/—tan“l HTE(]1.41)
for the zone of backward slip, and
Px=2k[E;-log,(z2--1)] - 21 1/ -_— tan 1z (11.42)

for the zone of forward slip,

where
_ ‘/ a I Ah z
o b Ry 1

AR
=) gy

According to this theory the character of the curves giving the
distribution of the specific pressure over the arc of contact is approx-
imately the same as that given by the theory of the specific pressure
when T = pp,, considered above, except that the rise of the specific

6*
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pressure curves towards the neutral section takes place less steeply
(Fig. 43). This is explained by the fact that the friction forces are
assumed to be smaller in this theory than in the preceding theory.

Pz
2k
Karmadn

Siebel
Nadai

( K arm?n)

= 2k=Const,
- (Siebel)

S

L] AT

T =C(v-v.)(Nadai)

Fig. 43. The distribution of specific pressure and specific friction

forces along the arc of contact during two-dimensional rolling

according to different theories: dry {r iction (von Karman); constant
friction force (Siebel), and viscous friction (Nadai)

To illustrate this statement a diagram has been constructed in the
lower part of Fig. 43, showing the value of specific external friction
forces in accordance with the theories of Siebel, von Karman and
Nadai.

5. SPECIFIC PRESSURE IN THE CASE OF SLIP WITH VISCOUS FRICTION
(NADATI'S THEORY)

‘We shall consider the distribution of the specific pressure over the
arc of contact, starting from the assumption that a slip with liquid
or viscous friction takes place between the metal being rolled and
the rolls. This case of rolling is unlikely in practice, but neverthe-
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less it is of a certain interest, since during the cold rolling of metal
with lubricated, well polished rolls, and with high rolling velocities
(10 to 30 m/s), the friction on individual portions of the contact
surface can be expected to approximate liquid friction.

This assumption is also based to a great extent on the fact that the
viscosity of lubricants strongly increases with pressure. Accordingly,
despite the high specific pressures observed during cold rolling,
a partial persistence of the oil film is entirely p0551b]0

In the case of viscous friction the specific friction force, according
to Newton's law, can be expressed as follows:

dv
T="M7g, (I1.43)

where m is the viscosity, and

% is the gradient of the velocity in the direction perpen-
dicular to the plane of slip.
If the thickness of the oil film is denoted by A, the velocity gra-

dient can approximately be written as:

dv Uy —Up
i (I1.44)
where v, is the velocity of motion of the metal being rolled in
a given section, and
v, is the peripheral velocity of the rolls.
The velocities v, and v,, derived from the fact that the volume
per second of the metal being rolled is constant, are

De=v, L
x 17— hx

]11
UVp=0U15— h

where vy is the exit velocity of the rolled metal from the rolls, and
h, is the depth of the cross section of the rolled metal in the
neutral plane.
If we substitute these values of the velocities into equations
(11.44) and (11.43), the specific friction force

te 7k (L — ) (11.45)

where the minus sign refers to the zone of backward slip, and the
plus sign refers to the zone of forward slip.

The quantlty ! in this equation is obviously the specific friction
force for the velomty of slip equal to the exit velocity of the metal
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from the rolls. We denote this quantity by

Ty - ot (I1.46)

Then the force T, in accordance with equation (I1.45), can be ex-
pressed as

— 1 1 -
T F gy <T\~_E (11.47)
After substituting this value of T into equation (I1.12) we obtain

dps 2k . dhy — 21, <%_L\ LT (11.48)

dz  hy " dz hn) hy

The sign T in front of the friction force disappears, and thus the
equation of the specific pressure is common for both zones of back-
ward and forward slip.

To solve this equation we equate the arc of contact with an arc
of a parabola, as it was done above. Then

lip = ax? -+ and tan @, ==azr
where
Al
a - -IT ﬂnd b S /l]

Denoting

V%

X = — 2z
a

we obtain

hy=2b(1--2%

We substitute these values of z and A, into equation (I1.48):
dpy 4h: AT (I B
dz ~ 1--z2 122 \ 1422 1+:$l)
where z, is a quantity depending on the position of the neutral
section, i.e., when A, = A,

1 2
Vab VAR
After integration we have

—0 (11.49)

A:

- 1.—z2
P = 2klog, (1 zt) - 400 (1_;:2—1 tantz )€ (IL50)

The constant C can be found from the initial conditions, if we put
z = 0:

C == E,izk
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The unknown quantity z, in equation (11.50) can be eliminated
assuming that when z = { and couespondmoly when z == z5, the
specific pressure

p = &2k
Then the specific pressure
‘ : o A [ o ¥
Px 2k | & -loge (1 ) 5 (=g — Btz ) (IL5Y)
where

1—:z2 ATCO [81—8&o -+ loge (1 -+-25)] -+ T—O:—ﬁ- -
B~ 1= tan~1zy (I1.52)

1 1/37

Z “T Ti_ x
Al

Zg - 1 T

It follows from this that for slip with liquid friction the curves
for the specific pressure distribution for hoth zones (backward and
forward slip) can bhe expressed by a single equation. We shall {ind
the equation characterizing the variation of the friction forces over
the arc of contact. For this we express the quantities 4, and A, in
equation (L1.47) by z and z,:

T
We determine the unknown z, from equation (11.52):
znﬂ/HB (I1.54)
Then
! ¢Z—°<%—B—1> (11.55)

Using this equation we can find the position of the neutral section,
i.c., assuming that when z = z, the value t = 0. It should be point-
ed out that the position of the neutral section does not coincide
with the maximum specific pressure. This can be verified by using
equation (I1.51), according to which when z ==z, the deriv-
g dpy
ative

dz

does not equal zero.

The very character of the specific pressure curve in this case
will be completely different from those for other forms of friction.
Instead of the sharp peak of the curve of specific pressure at the
neutral section we now have a domed top.
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To compare the theory of Nadai with the other two theories of
specific pressure with t, = pup, and 1, = const., Fig. 43 represents
curves showing the variation of the specific pressure and the specific
friction forces along the arc of contact in accordance with the three
theories. All these curves have been plotted for the case of 10111110
when g = 2 mm, Ay =1 mm, D = 200 mm and & = &, =
At the same time the forces of fuctlon in accordance with the theoq
of Nadai have been calculated with the assumption that when
z = 0 the value of the friction forces is the same as for the other
theories, i.e.,

t=pn2k=0.2x 2k

6. DISTRIBUTION OF FRICTION FORCES OVER THE ARC OF CONTACT

The three theories concerning the distribution of the specific
pressure along the arc of contact which were considered above are
based on the assumption that the metal being rolled slips along the
surface of the rolls over the whole extent of the arc of contact. In the
zone of backward slip the metal slips in the direction opposite to the
rotation of the rolls, whilst in the zone of forward slip this takes
place in the direction of the rotation of the rolls.

Depending on the character of slip assumed in these theories the
contact friction forces are determined differently and so are the stress
states caused by these forces. In the first theory, suggested by von
Kdarman, the friction forces are assumed to be proportional to the
specific pressure, and accordingly it became known as the theory
of dry friction.

Similar results were derived by E. Siebel. But in his results the
friction forces were constant over the whole arc of contact, and
equal to p2k.

Considerably later Nadai proposed a theory of specific pressure
according to which the friction forces were taken as proportional to
the velocity of slip. This theory was worked out for cold rolling of
metal with lubrication, starting from the assumption that viscous
friction is possible between the metal and the rolls.

All these theories are associated with the volling theory which
prevailed more than 25 years ago. The basic shortcomings of the theo-
ry are the absence of a sufficient justification for the values of the
contact friction forces adopted in them, the existence of a total
slip over the arc of contact, and the limitation to certain
particular cases of rolling when the effect of the outer zones is insig-
nificant.

In contrast to this assumption of slip over the entire arc of contact
there is another view stated in 1933 by N. Sobolevsky (U.S.S.R.),
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according to which the metal being rolled does not necessarily slip
along the surface of the rolls. This view, although it has not received
a general approval, nevertheless deserves the closest attention and
is doubtlessly correct under certain conditions of rolling. For exam-
ple, there are grounds to believe that in the case of rolling thick
strips, when the length of the arc of contacl is small, the slip between
the metal and the rolls is absent.

At the same time it would also be erroneous to deny completely
the existence of slip between the metal and the rolls. For example,
in the case of rolling of thin stirips with a long length of the arc of
contact the slip undoubtedly exists.

Analyzing both these views we can say that in the deformation
region there is yet another zone besides the two zones of slip (the
zones of backward and forward slip) where there is no slip between
the metal being rolled and the rolls. In contrast to the zones of slip-
ping we call this the zone of sticking. Thus, according to this new
theory the boundary between the zones of backward and forward
slip, where the direction of motion changes, is not a line but a certain
zone over which the backward slip has ceased but the forward slip
has not yet begun.

As no slip of the metal takes place over the surface of the rolls
in the sticking zone, the condition of deformation in this zone, and
hence the distribution law of the specific friction forces, are different
from those in the zones of slipping.

Taking into consideration this circumstance, we begin the con-
sideration of the problem of calculating the specific pressure by
determining the law of distribution of the contact friction forces
over the arc of contact, i.e., we consider the contact shear forces
in conjunction with the most characteristic case of longitudinal
rolling.

From the viewpoint of the methods of calculating the contact
friction forces, practical cases of rolling wide strips with smooth
rolls (bearing in mind two-dimensional strain) are conveniently
divided into four types of rolling, which differ from each other by
a different ratio of the length of the arc of contact to the mean depth
of the rolled strip.

The approximate
Type of rolling value olf. the ratio

h m

I 5
11 2-5
171 0.5-2
v <0.5
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The deformations for the above four types of rolling differ consid-
erably in character, and accordingly, different methods must be used
to calculate the contact friction forces and hence the specific pressure
for these types of rolling. But the boundaries between these four
types of rolling have not yet been established exactly; they depend
not only on theratio I : h,, but also on other factors and, in partic-
ular, on the coefficient of friction, the reduction and the angle of
contact. Accordingly the values of the ratio I: h, stated above
should be regarded only as very tentative.

T [

< i
N i
Y | 3 §L
b 1\
! \
x
D 18
A
A’/
.
™

Fig. 44. The distribution of friction forces along the arc of
contact when the ratio ! : %, > 5:

I—zone ol backward slip; 2—zone of forward slip; 3—region of slipping
in the zone of backward slip; £—region of slipping in the zone of forward
slip; o —zone of sticking; 6—zonc of reduced deformation

I. When the ratio I : k,, > 5 there are zones on the arc of contact
where the friction forces follow different laws.

At the beginning and at the end of the arc of contact, when its
length considerably exceeds the depth of the cross section of the
rolled strip, the metal undoubtedly slips along the surface of the
rolls. This circumstance is confirmed by the data of numerous ex-
perimental investigations. Therefore, we can assume that on these
regions, i.e., over the zones of slipping (Fig. 44), the friction forces
are distributed according to the law of dry {riction:

T=Upx (I1.56)

If at the beginning of the arc of contact tan ¢, >> p then on this
region of the arc, as was mentioned above, a reduclion in the spe-
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cific pressure (see Fig. 42) is observed, and, consequently, areduction
in the specific friction forces (Fig. 45).

Since the quantity p, increases towards the cenlre of the arc
of contact and, consequently, the quantily up, increases, the fric-
tion force can attain the value:

Tk (11.57)

where A is Lhe resistance to pure shear.

!

Fig. 45. The distribution ol friction forces along the arc of conlact
when initially tan ¢, >

The friction cannot attain any higher value since when the resist-
ance to slip along the contact surface is higher than &, internal slip
or shear occurs in the melal next to the contact surface. Consequently,
whenever the friction force on the contact surface reaches k (at points
C and D in Figs. 44 and 45), the melal ceases to slip along the sur-
face of the rolls so that on the rest of the segment CD of the arc of
contact a zone of sticking is observed.

Over the portions of this zone close 1o the points € and D the
friction forces are equal to k, i.e., for k == const. their value is
constant.

On the middle portion of the zone of sticking close to the neutral
section there appears a region where the plastic deformation is slowed
down or is absent altogether. This region is also called the region of
stagnation.
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The presence of such a region of stagnation is confirmed by a num-
ber of experimental investigations, according to which a region is
observed, close to the middle portion of the arc of contact, where
there is no deformation along the arc, and in the case of a two-dimen-
sional strain, where there is also no deformation in the radial direc-
tion. Certain investigators assume that in the case of large ratios
bpm : b (where b, is the mean width of the rolled strip) the zone
of sticking does not exist, in particular, when I: h, > 2.4. But
the tests conducted by I. Tarnovsky and V. Trubin provide evidence
that the variation of this ratio of width to depth of the rolled strip
over very wide limits (b, : kp, =~ 0.85 to 3.4) shows no substantial
influence on the extent of the zone of sticking. In all their tests
on rolling lead pieces of various width, the cxtent of the zone
of sticking at the mid-width of the strip was considerable
and on the average equalled I, = (0.69 to 0.73)l. I. Tarnovsky
and V. Trubin assume that the zone of sticking is somewhat larger
in the middle of the test piece than at the sides, where the tensile
stresses due to the increased zone of sticking are reduced. At the
same time they considered the fact that in rolling lead test pieces
the zone of sticking sharply contracts as the ratio I: h, increases
to more than 1.85, and for a further increase of this ratio disappears
altogether. This fact is doubtlessly of interest, and it shows the
great difference in two-dimensional rolling processes, when the
ratio [ : h,, > ~ 2 (the first two types of rolling) and when [ : &,, <C
<< ~ 2 (the third and fourth types of rolling).

When the ratio I : h, > ~ 2 the tendency of the metal to slip
over the arc of contact increases sharply. As a consequence of this,
as was already mentioned above, the zones of slipping AC and DB
will appear (see Fig. 44). Simultaneously with the increase in
slip the difference

Up COS ¢ —Vxm

in the inequality (II.1) must diminish, and, consequently, the
non-uniformity in the distribution of the deformation across the
depth of the strip becomes less severe. In this case the methods of inves-
tigation used by I. Pavlov and Iszhi Bazan (the method of imprints),
and also by I. Tarnovsky and V. Trubin (the method of analyzing
the coordinate network) are not sufficiently accurate for discovering
small plastic strains (less than 1 to 2%). Because of this, the disap-
pearance of the zone of sticking noted in these investigations
when rolling test pieces having the ratio 1: h,, roughly in excess
of 2 to 2.4 can rather be explained by the imperfections of the
measuring equipment than by ils actual absence.

The law for the distribution of contact shear siresses or friction
forces in the region of stagnation of the zone of sticking has not yet
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been determined in exact form. It can be established approximately
on the basis of the analysis of experimental data on the distribution
of the specific pressure over the arc of contact. For this we use equa-
tion (I1.12), from which it follows that

— (e dpy e A N
v F (S S -2ktangy ) (11.58)
The derivative {%* represenis the tangent of the angle of slope

of the specific pressure curve, and therefore the first term of this
equation varies within a wide range over the middle portion of the
arc of contact. But owing to the domed peak of the curve this varia-
tion is gradual. At the point of the maximum pressure the tan-
gent of the angle of slope equals zero. On one side of this point
it increases smoothly, whilst on the other side it decreases. The
second term of equation (I[.58) wvaries little over the middle
portion of the arc of contact; accordingly it has no substantial effecl
on the value of 1. Hence we can draw the conclusion that the domed
peak of the diagram of the specific pressure measured on the are
of contact signifies a smooth variation of the friction forces close
to the neutral section, where their value is zero. On both sides of this
section the absolute value of the friction forces increases approaching
its extremal values only gradually.

In the recent years this has been verified experimentally by
A. Chekmarev and P. Klimenko from simultaneous measurements
of the projection of the specific pressure and friction forces by two
load cells set in the body of the roll at an angle of 45° to the contact
surface and positioned on different sides. One of the diagrams of the
distribution of the normal and shear forces along the arc of contact
thus obtained is shown in [Iig. 46. Later O. Muzalevsky and
A. Grishkov arrived at the same result, measuring directly the
contact friction forces by a load cell especially designed by them
for this purpose.

Thus the zone of sticking consists of three regions: two regions
of internal slip, located close to the points € and D where the {ric-
tion forces equal pk, and a middle region IF (see Figs. 44 and 45)
where plastic strain is slowed down and the contact friction forces
vary from zero in the neutral section to the maximum values given
by equation (I1.56) or (I1.57), both in the zone of backward slip,
and in the zone of forward slip.

Approximately, if we assume that the friction forces on the region
of stagnation vary according to a law which is approximately linear,
then

o hx—hn hx—hy o
TRk EFtan opp  Stangpp | (IT.98a)
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kg/mm? XX where 1 is a coefficient characteriz-
30| Direction of , ~* \ p ing the intensity of the
28 rolling 7/ x variation of T on the re-
gz: gion EF and which is
) . 2k

29k equal to the ratio T
20- h To determine the quantity 7 in
;g: x equation (I1.58a) it is necessary to
ok knqw the extent of the stagnation
ok region EF. The extent of this region
i depends on a large number of factors
sk ) T and in the first instance on the depth
sk X of the cross scction of the rolled
P W : I‘ strip over the region EF, i.e., on h,,
2k ‘ T and on the coefficient of contact
gk L1 T\‘l friction. When &, and p increase,
_2t the extent of the region EF increases
—4F as well. In view of the absence of
-6 theoretical and experimental data
-8} % concerning the extent of the region

Y7
-10'04 ) EF, we must tentatively put for its
QZF value
0
27 W\ ly ~ (0.5 to 2) hy,
~a4 for hot rolling, and

-4

L . Iy~ (0.3 to 1.0) &,
Fig. 46. Distribution of the normal
and contact ]she.ar stt]ressl(;stand“fcge for cold rolling,
E?,t(l)gogé)])of( ](l)guﬁmnfed s(t)eef(zkol:g where #,, is the mean @epth of the
=5.5mm; hy=4.7 mm; by=>50 mm; Cross Sec.tlon of the
Ak == 0.8 mm; v, = 0.4 m/s; D = rolled strip.

=270 mm and [: h, =~ 2.0) From the analysis of the distri-

bution of specific friction {forces

along the arc of contact we can conclude that the division of the arc
of contact into two zones—the zones of backward and forward slip—
specifies only the direction of deformation of the rolled metal relative
to the rolls. This division says nothing about the character of the
displacement of the metal relative to the surface of the rolls.

When the ralio ! : k,, roughly exceeds 5 the arc of contact should
be divided into three parts, of which the two end ones are zones
of slipping, whilst the middle one is a zone of sticking, which in its
turn consists of three regions: two regions of internal slipping,
and a middle region where deformation is slowed down, the
latter being located simultaneously in the zones of backward and
forward slip.
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II. When the ratio I : &, =~ 2 to 5 the regions CE and FD, where
the friction forces are constant, can disappear (Fig. 47). This takes
place because Lhe friction forces on the regions AC and DB, owing to
the reduction in the length of the arc of contact, cannot increase
up to the value of k, since the law governing the variation of the
friction forces on the region EF of the diminishing deformation
becomes effective.

Neutral
i | |// section
A
\1 C 1o )
/ 3 1z {
L
A

Fig. 47. Distribution of the friction forces along the arc of
contact when the ratio 1 : &, ~ 2 to 5. No sections show constant
friction forces:

1 and 2—zones of slipping; 3—zone ol sticking

Thus, for the ratio [: h, stated the zone of sticking consisls
only of a single region where the deformation is diminished (see
Fig. 45).

For the remaining three regions AC, CD and DB the specific
friction forces are clearly determined by the equations (II1.56) and
(I1.58) given above.

ITI. When the ratio l: h, =~ 0.5 to 2 the length of the arc of
contact relative to the height of the cross section becomes so small
that therc is no room for the zones of slipping, and the zone of sticking
begins to spread out over the entire arc of contact. The diagram
for the distribution of the specific friction forces will in this case
be expressed by two triangles (Fig. 48a). The magnitude of the
friction forces can approximately be determined from equation
(IT1.58a). By the quantity EF appearing in this equation in the
given case is meant the ideal extent of the zone of sticking, equal
to the agreed section over which the friction force undergoes a full
range of variation: from —% to zero and then to -“-k.

IV. When the ratio I:hk, << 0.5 the compressive strain does
not penetrate the whole cross section of the strip being rolled, and
the side edges are usually concave at mid-thickness. The zone of
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sticking in this case spreads out over the entire arc of contact, just
as in the preceding case, only the tendency of the metal to slip
will become very slight and accordingly the contact friction forces
will be quite small. Their diagram is given approximately by two
triangles of small height (Fig. 48b).

The analysis of contact friction forces just carried out shows that
their value and the law according to which they vary along the arc

T

A

1
A Neutral
B section

(a) ()

Fig. 48. Distribution of friction [orces along the arc of contact:
(a) l: "m = 0.5 10 2, (b)!: hm < 0.5

of contact are not the same for different conditions of longitudinal
rolling, and that to a large extent they are determined by the ratio
of length of the arc of contact to the mean thickness of the cross
section of the strip being rolled.

There are four most characteristic cases of the distribution of
contact shear stresses or {riction forces: (1) I: hn > 5 (see Figs. 44
and 45); (2) 1 : hm =~ 2to b (Fig. 47); (3) 1 : hn =~ 0.5 to 2 (Fig. 48a);
(4) 1: h,<<0.5 (Fig. 48b).

7. THE LOCATION OF THE MAXIMUM SPECIFIC PRESSURE
RELATIVE TO THE NEUTRAL SECTION

In considering this problem we first define more precisely the
fundamental features of the neutral section and the section passing
through the point located on the arc of contact where the specific
pressure attains the maximum value. We shall call the latter the
section of maximum pressure.

The first section is characterized by the fact that an isolated
element of the metal being rolled moves with a mean velocity equal
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to the horizontal projection of the velocity of the rolls, and has
the same tendency to deform towards the zone of backward slip
and towards the zone of forward slip. From this it follows that the
contact friction forces acting on this element must be zero.

The section of maximum pressure is characterized by the fact
that the mean pressure, and, consequenily, the mean longitudinal
compressive slress in the metal attain a maximum value in this

\{‘ﬁm

e

Pz max i

Fig. 49. The conditions of equilibrium of an element at the section
characterized by maximum specific pressure (a—specific pressure
diagram)

section. Accordingly, an isolated element of the metal at this section
is subjected to longitudinal compressive stresses from both sides,
having the same value (Fig. 49):

,
Oxmax “= Oxmax

Bearing in mind this precise definition, procceding from the
condition of equilibrium of the two elements mentioned above and
assuming that the pressure p, is considerably higher than the lon-
gitudinal stress o,, we can draw the following conclusions:

(1) the element isolated at the neutral section (Fig. 50) has the
values of the longitudinal stresses on either side (0., and 0%,) which
are not the same, since from the condition of equilibrium it is neces-
sary that

Oxn =>0Oxn

and, consequently, the neutral section does not satisfy the condi-
tions for the section of maximum pressure;

(2) the element isolated at the section of maximum pressure
must have friction forces acting along its contact surfaces; other-
wise, when 0, nmax = Ox max the conditions of equilibrium would
not be satisfied. It is not difficult to see that these friction forces
must act in the direction of rotation of the rolls. The value

7—0662
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of the specific friction forces T,.q. can be found {from the equation of
equilibrium:
Tmax = (px — Gx) tan Qg =~ 2k tan Pmax ([ I 59)

where @nq. is the angle characterizing the position of the section
of maximum specific pressure.
It follows that the contact friction forces t are not zero al Lhe
section of maximum specific pressure. Thus, this section does not
satisfy the conditions of equilibrium of the neulral seclion.

pl‘ﬂ .

section

§
P
Q
3

| Arn
|

<]

utral

e

Fig. 50. The conditions of equilibrium of an element at the
neutral section, where o, > on

From this analysis of the conditions of equilibrium of isolated
elements at the two selected sections we arrive at a positive conclu-
sion: the neutral section must not coincide with the section of maximum
pressure. This conclusion was made by A. Nadai in analyzing the
theory of specific pressure (in the case of slipping with viscous
friction), and in a more general form by A. Korolev.

Since the contact friction forces at the section of maximum pressure
are in the direction of rotation of the rolls, it follows that this seclion
is located in the zone of backward slip, and the neutral section is
displaced from it (obviously by a very small amount) towards the
exit of the metal from the rolls.

The correctness of the conclusion that the maximum specific
pressure does not coincide with the neutral section can be verified
not only on the basis of the analysis of the conditions of equilibrium
of eclements isolated between plane sections. Similar results are
obtained if the neutral section and the section of maximum
pressure are represented not by a plane, but, say, by a cylindrical
surface perpendicular to the surfaces of the rolls (Fig. 51). It is
not difficult to see that if friction forces are absent on the con-
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tact surfaces, then for the condition of equilibrium it is necessary
that 6., > 0, and, conversely, if oy, O.n, lhen for equilibrium
it is necessary that the friction forces on the contact surfaces are non-
zero. Thus, Lhe above conclusion that the ncutral section does not
coincide wilh the location of the maximum specific pressure is

confirmed.

Fig. 51. The conditions of equilibrium at the neutral section,
using cylindrical coordinates

In concluding we shall allempl Lo explain this result from a physi-
cal standpoint. When metal is compressed belween two inclined
plates (Fig. 52) or rolls, it can deform more readily in the direction
of the greater distance between the plates. Hence, in order to deform

M N

M N

Fig. 52. The relative locations of the maximum specific pressure
MM and the neutral scction NNV for metal compressed between
inclined plates

in both directions which correspond to the neutral section, it is obvi-
ously necessary that at the given site the horizontal compressive
stresses on the side of the diverging space are somewhat larger than
those on the side of the converging space. In the case where these
stresses are equal, which corresponds to the maximum specific pres-
sure, ihe metal deforms only in the direction of the diverging space.

T
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It is clear that the smaller the angle a between the plates, the nearer
to the position of the maximum specific pressure will be the neutral
section. When the plates are parallel the position of the neutral
section and the location of the maximum specific pressure coincide.

8. MODERN THEORY CONCERNING THE DISTRIBUTION
OF THE SPECIFIC PRESSURE ALONG THE ARC OF CONTACT

As has already been mentioned above, the distribution of the
specific pressure along the contact surface is to a large extent deter-
mined by the law of distribution of the friction forces. Consequently,
the existing theories of specific pressure (see Chapter II, Sections 3
to 5) differ from each other nol in the method of accounting for the
effect of the state of stress on the specific pressure, but only in the
method used to calculate the friction forces.

The detailed analysis of contact {riction forces carried out in
Section 6 of Chapter II shows that the actual patterns of their dislri-
bution differ in principle from the patterns assumed in deriving
the existing theories of specific pressure.

Since these theories do not reflect the actual law of distribution
of the contact friction forces, we shall attempt to outline the
modern theory of specific pressure for longitudinal two-dimensional
rolling.

The law of distribution of the specific pressure over the arc
of contact will be considered in the same way as for the case of
contact friction forces, that is, separately for four cases of rolling
differing from each other in the ratio of the length of the arc of
conlact to the depth of the cross section of the strip being rolled.
The curves of the distribution of the specific pressure for the four
cases of rolling, like the curves of the contact friction forces, will
differ considerably from ecach other, and hence different methods
of calculation must be used.

When the ratio I : A, > 5, al the beginning and at the end of the
arc of contact, over the regions AC and DB (see Fig. 44) the friction
force is determined from equation (II.56). Therefore, for calculating
the variation of the specific pressure in these regions, equation (I11.13)
may be used, i.e., the equation of von Karmin, and also equations
(11.23) and (II.24), or equations (II.31) and (II.32) of the author:

Pe=goc | (Bobac—1) <Z—Z>6AC+11 (11.60)

for the region AC, and
2k hy Spp
Pe =5 — [(§16D8+ 1) <W> —1 ] (11.61)
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for the region DB,
where

§o=1—§% §1=1—% Ssc=p:tan@,c Opp=p:tan¢py

0y and o, are the mean tensile stresses in the regions A4,
and BB1
¢.c and @pg are the angles the chords AC and DB make wilh
the axis of the strip being rolled (see Fig. 44).

If at the beginning of the arc of contact tan @, > p, then, as has
already Dbeen stated, we should either use equation (I1.23) or we
should divide the arc AC into two or three regions and calculate p,.
from equation (II.60) for each region, using the appropriate value
of 8 ,¢ dependent on the angle of inclination ¢, of the tangent to the
axis of the strip being rolled (see Fig. 45).

In the subsequent regions of the arc of contact, CE and FD (see
Fig. 44), the friction forces equal k&, and accordingly the specific
pressure can be calculated from the theory of constant friction forces,
taking p = 0.5.

But assuming that over thesc regions of the arc of contact the
contact friction forces 1, = k, the direclion of the normal stresses
Px considerably deviates from the principal normal stress, and accord-
ingly the equations of equilibrium (II1.6a) and (II.6b) must be
solved simultaneously with (I.70) rather than (IL.8), i.e.,

Px—0x % . s 3
T ) ek

2 L

Putting 1, = k& in it we obtain
Px—0x =0

whence, in accordance with equations (II.6a) and (II.6b), it fol-
lows that

koo dhy
e (11.62)

© o hy

dps= T

After inlegration, in order to simplify the calculation, we
replace p,, without introducing appreciable error in the arc of con-
tact over the regions CE and FD, and obtain

k

hU

Px= Pc =

for the region adjacent to the point C, and

k Ny
pxzpD—:—mlogeﬁ (1164)
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for the region adjacent Lo the point D respectively,
where pc and pp are the specific pressures at the points C
and D, calculated from equations (I1.60)
and (IL.61)
¢ci: and ¢pp are the angles between the axis of the rolled
sltrip and the chords CE and DF
he and h;, are the thicknesses of the rolled section at
the points C and D.

Equation (II.64) can also be easily solved when tan ¢ is varying,
i.e., without equating the arc of contact to a chord. This exact
solution can be of interest in the case of large angles of contact,
when tan ¢ is close to the cocflicient of {riction, i.e., close to 0.5. In
equation (I1.64) we denote

dhy ' 72
tan¢ == T and /zx~111+—7
then
— 2kdz
dp.= F ——
hi‘i'T

After integration we find p.
for the zone of backward slip:

= Ppe - Zkl/ <lan 1

whilst for the zone of forward slip

e D T an™! —% _ __tan-! _ID__ 56
Pe—pp -2k . (tdn T tan 1/Tu> (I1.66)

According to the initial conditions, when z = z. (Fig. 53a), p. =
= pe, and when z — z, the quantity p, = pp.

The specific pressure over the regions CE and DF will increase
towards the neutral section, but not so rapidly as over the regions
AC and DB (Fig. 53a).

To determine the specific pressure over the middle region of the
zone of sticking, i.e., over the region EF, it is necessary 10 substitute
the value of the friction forces for this region from equation (I1.58a)
into equation (II.12).

Noting that

z¢ x
,_ —t( _1 ——— \ .(.r
/vy an Vo, / (11.65)

tang=tan ¢pp

we obtain

o N (hx— hn dhy .
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Fig. 53. Variation of the specific pressure and specific friction forces along the
arc of contact for two-dimensional rolling with different ! : &, ratios:
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The other sign in front of the second term inside the brackets
vanishes, since equation (I1.58a) gives the friction force for the
whole region EF, including that part of it which is located in the
zone of forward slip.

After integrating between the points EF we have

pe=pptk [ Ap—h)— @4 Ah) log, 12 ] (1168)

where py is the specific pressure at Lhe point E, determined from
equation (II.G63) or (I1.65)

he is the depth of the cross seclion of the strip at the point

E 4 is a constant for the region EF, given by the equation

A ! n (11.69)

~ EF tan? PLF = 2% tan? CEr

The quantity k, entering equation (II.68) can be found from the
condition that the values of the specific pressures, given by equations
(I1.66) and (IL.68) for the point F, must be the same:

pi;—pF +A (hpp—hp) Y
I = S (I1.70)
A log, 7;--

where pp and pp are the specific pressures at the points £ and F
determined from equations (II.65) and
(I1.66) respectively.

Thus, for Lhe region EF the specific pressure on both sides of the
neutral section is expressed by a single common cquation. The
dome-like peak of the specific pressure curve (Fig. 53a) obtained
from equation (I1.68) fully corresponds to the experimental resulls
of W. Lueg, A. Korolev and others. The oscillograms taken during
their investigations, showing the variation of the specific pressure
during the rolling process, as a rule have rounded peaks which
cannot be explained merely by the width of the probe transmitting
the pressure of the metal to the load cell. It is certain that the dome-
like peaks of these specific pressure curves are obtained as a result
of the presence of a zone of sticking belween the two zones of slip-
ping.

This circumstance is supported in a particularly striking manner
by the investigations into the specific pressure, conducted wilh
this specific aim in view, by A. Korolev, N. Svedo-Shvets and
A. Tselikov. Owing to the fact that these investigations were carried
out on a mill with rolls of large diameter (900 mm), the arc of contact
during the rolling was many times greater than the diameter of the
measuring probe which was 3 mm. As a result, the effect of the



STRESSES IN ROLLED METAL 105

diameter of the probe on the radius of curvature of the oscillogram
was eliminated. :

The location of the maximum specific pressure can be determined
if we equate the derivative given by equation (II.68) to zero:

dp . 1 B
dh:f =k l:—A+ (2"(‘14[1”)'@'] —0

i.e., the maximum specific pressure will be observed when
2
hlel,l '{-7

Consequently, the point of maximum specific pressure is displaced
a little relative to the neutral section in the direction of the entry
of the metal into the rolls, the amount of this displacement being
proportional to tan gy, which agrees with the conclusions drawn
in the preceding section.

When the ratio I : h, =~ 2 to 5 the regions where the value of the
friction force is constant, and, consequently, the regions of the
specific pressure diagram corresponding to them can vanish (Fig. 53b).
For the remaining three regions of the diagram (AC, CD and DB)
the specific pressure will obviously be determined from equations
(I1.60), (11.61) and (II.G8).

When the ratio I : h,, &~ 0.5 to 2 the zone of sticking, as previously
mentioned, occupies the entire arc of contact and therefore the graph
showing the specific pressure distribution is in the form of an exter-
nally convex curve over the whole arc of contact (Fig. 53c). Then
the specific pressure is determined by equation (II.68), if by the
region EF in equation (I1.69) we understand, as before, the ideal
extent of the zone of sticking, equal to the agreed region over which
the value of the friction force can vary from —k to k.

When the ratio {: h,,<0.5 the specific pressure curve—owing
to the fact that the magnitude of contact friction is small—is char-
acterized by aslight rise at the middle portion of the arc of contact,
and in practice its value may be taken as constant (Fig. 53d). The
characler of the specific pressure curve is similar to that of
the curve for the preceding case (Fig. 53¢), located close to the
neutral section. But owing to the low value of the ratio I : h, the
specific pressure is in this case affected considerably by the outer
zones. As a result of the phenomenon considered in Chapter I, Sec-
tion 22, the specific pressure at the points A and B, and hence also
over Lhe entire arc of contact, will be higher than in the cases of
rolling represenied by Fig. 53a, b and c¢. This problem will be con-
sidered in detail in Section 10.

Summing up the above analysis of the patterns of the specific
pressure dislribution over the arc of contact for the four typical
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cases of rolling, we may conclude that in solving this problem differ-
enl approaches must be used depending on the ratio [ : h,,. As was
shown above, this enables the contact friction forces to be found
more correctly, and hence their influence on the specific pressure
lo be taken into account. But it must be taken into considera-
tion that the classification of specific pressure diagrams into four
basic types (Fig. 53) does not precisely differentiate between the
cases of rolling mentioned above. Actually the boundaries are not
solely determined by the ratio [: h,. They also depend on the
coefficient of friction, the reduction and the angle of contlact, and
accordingly the values of the ratio I: h, given above should only
be regarded as approximate.

9. EXPERIMENTAL RESULTS FOR THE DISTRIBUTION
OF THE SPECIFIC PRESSURE ALONG THE ARC OF CONTACT

The specific pressure distributlion over the arc of contact has been
subjected to repeated experimental investigation, in which the

.

/

T
N

yZ1II\

_—

&
Q

e

Axis af rolls

N
Q

BN
Q

Specific pressure, kg/mm?

20 o . -
//%7 12 \\\\‘
4 / /
0 $ 20 16 17 & 4 g 4 mm
’ True length of arc of contactly - . ...
n87 Zone of deformation  tlastic zone

Fig. 55. Variation of the specific pressure along the arc of contact
for hot rolling of strips of steel Cr. 3 with different strip thicknesses
and different reductions; a—diameter of the load cell probe:

Curv Ah . .
No. hg, mm T(-) !, mm l.hm
1 15 0.28 25 1.94
2 11.6 0 28 16.5 1.65
3 5.0 0.54 18.3 5.0
4 4.3 0.46 15.7 4.8
5 2.3 0.43 11.2 6.2
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actual pressure of the metal being rolled was measured by the
probe of a special load cell installed in the body of the roll. The
form of all experimental specific pressure curves for rolling wide
sirips with smooth rolls is very close to the form of the curves
plotted from the theoretical results presented above (Fig. 53).

B 3
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e 24.0 ~—— 18,05 —
374 Il 321
5 L 1678 7 8
H12 S
g &
L 4
/ ¥ ),
e——175—= | 32 le——74.0
2720 i ————
25 24
10 [ 24 o 12
P20 §
:75&,
g ra 17
-8
,4 |
I ~ 2]
108—~ 884
L—72_7_._.. L;ij

Fig. 56. Variation of the specific pressure along the arc of contact
at the strip axis in the rolling of 50-mm wide lead strips with
different thicknesses and different reductions:

Curve Curve

No. hg, mm Ah, mm l:hm ‘ No. ho, mm Ah, mm l:hm
|
1 22 4.4 1.21 7 6.1 1.5 2.061
2 22 10.8 2.25 8 5.9 3.5 5.13
3 15.9 2.5 1.22 9 4.0 0.9 3.02
4 15.9 7.9 2.74 10 3.9 2.4 6.535
3 10.1 2.3 1.97 11 2.1 0.6 4.9
[ 9.8 3.6 3.85 1 12 2.0 1.2 11.8

As an example we present the specific pressure diagrams measured
by W. Lueg (Fig. 54) for cold rolled copper, by A. Korolev (Fig. 59)
for hot rolled steel, and by A. Chekmarev, L. Kapturov and P. Kli-
menko (Fig. 56) for rolled lead test pieces. In all these cases test
pieces of different cross-sectional depths were rolled, using different
reductions, i.e., different [: k, ratios.
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Comparing the curves presented in each of these figures we notice
that as the ratio [: k, increases the slope of the curve over the
region close to the neutral section becomes steeper, and the peak
of the curve grows more pronounced. When the ratio [ : &,, is approx-
imately equal to two, for example, the curves of Fig. 54a and also
the curves 7 and £ of Fig. 55 and the curves 7 to 4 of Fig. 56 resemble
the curves shown in Fig. 53¢ and d, whilst the curves shown in
Fig. 54c and the curve 4 of Fig. 55, and the curves 70, 771 and 12
of Fig. 56 are generally similar to the curve shown in Fig. 53a.

10. THE INFLUENCE OF THE OUTER ZONES
ON THE SPECIFIC PRESSURE

Experimental investigations into the forces arising during
the longitudinal rolling of strips of considerable depth of cross
section, when the ratio [ : k, << 0.5, show that the specific pressure
in this case is higher than in the case of rolling where I : h,, =~ 1 to 2,
where also the effect of external friction is greater. The author
together with V. Smirnov explained this phenomenon by the influ-
ence of the outer zones, i.e., the zones adjacent to the geometrical
range of deformation; as a result of their action the resistance to
deformation is considerably increased in the case of a small arc
of contact and large depth of the cross section of the rolled strip.

In deriving equation (I.98)

this problem was considered theoretically for the case of a flat die
indenting a semi-infinite body. This case of deformation can be
identified with the rolling, for example, of large ingots in plate
mills in the first passes, which are characterized by small reductions
when the depth of the cross section of the ingot is many times greater
than the length of the arc of contact. But equation (I1.98) for this
case of deformation is scarcely applicable in toto, since the ingot
being rolled is ultimately subjected to a general stretching, although
melal located on its axis is deformed to a small extent.

To determine the effect of the outer zones on the resistance to
deformation V. Smirnov and afterwards V. Pushkarev conducted
a series of experimental investigations.

V. Smirnov subjected test pieces of rolled lead, steel, aluminium
and copper to compression, using the two set-ups shown in Fig. 57.
The first set-up is for compression of rectangular test pieces
with the dimensions I, 2 and b belween parallel faces, whilst
the second is intended for the local compression of test pieces of
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a considerably greater length, over a portion limited by the length 1.
The test pieces being compared had the same depth % and width 5.

For test pieces of each dimension the mean specific pressures
were calculated at the same deformation for schemes I (p') and

Fig. 57. Two methods (/ and /7) of compressing test picces to
determine the effect of the outer zones of the strip on the resistance
to deformation:

A —test pieces; B—compression faces; C—dial indicator

IT (p); the influence of the outer zones on the magnitude of the
mean specific pressure was evaluated via the coefficient of the
state of stress

" ) -
n6=#=f<%> (IL.71)

The main test pieces were made of lead (Table 2); specimens
of other metals were tested to establish the relation between nj
and the kind of material.

The different dimensions of the lead test pieces enabled ng
to be determined for diiferent absolute values of [ and &, using the
same ratio so as to establish the effect of the scale factor.

The test pieces were compressed in a hydraulic press at the rate
of 1 mm /min. The forces during the test were recorded by the manom-
eter of the hydraulic press, whiist the deformations were read off
frem a dial indicator (Fig. 57).

The results cf the tests shcwed that the coefficient ng depends
only slightly on plastic deformation the maximum value of which
during the tests amounted to 18 to 20%. The fluctuations of the



Table 2

The Results of Testing Different Specimens to Determine
the Effect of the Outer Zones on the Resistance to Deformation

Test results

Test picce dimen-

sions, mm* Rla.t,ilo C:,)fefrfli- Sel-up I Set-up 11
’ ”g number of p’ number of P
h ! lesl piecces kg/mm2  test picces kg/imm?2
Lead
30 30 1.000 1.00 b) 1.62 4 1.66
30 15 0.500 1.40 3 1.42 3 1.96
30 10 0.333 1.60 7 1.40 3 2.28
30 7.5 0.250 1.73 3 1.44 4 2.48
30 5 0.167 2.20 3 1.41 4 2.98
30 2.5 0.0835 2.70 — — 3 3.83
30 1.25 0.0417 3.60 — — 3 4.90
30 0.5 0.0167 4.70 — — 3 6.50
22.5 30 1.333 1.03 3 1.70 2 1.78
22.5 15 0.166 1.17 3 1.53 2 1.80
22.5 10 0.444 1.42 3 1.49 5 2.10
22.5 7.5 0.333 1.50 3 1.55 3 2.30
22.5 B} 0.222 1.80 3 1.49 3 2.70
22.5 2.5 0.111 2.40 — — 3 3.68
15 30 2,000 1.05 3 1.97 4 2.09
15 15 1.000 1.08 3 1.75 6 1.95
15 10 0. 666 1.16 4 1.68 3 2.00
15 7.5 0.500 1.30 3 1.65 4 2.15
15 B) 0.333 1.52 4 1.60 4 2.54
15 2.5 0.167 2,15 -— — 4 3.24
Steel
30 15 0.3500 1.37 4 32.1 3 42.5
30 10 0.333 1.54 3 33.9 7 o1.1
30 7.9 0.250 1.66 — — B 57.0
30 b) 0.167 2.19 — — 4 74.2
Aluminium
30 15 0.500 — 2 16.0 —
30 10 0.333 1.62 4 15.9 4 27.0
30 5 0.167 2.30 — — 3 36.8
Copper
30 10 0.333 1.62 4 23.1 3 39.2
30 B) 0.167 2,22 — — 3 53.3

* Width cf test pieces is 45 mm.
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coefficient ng within the range of deformations tested did not exceed
10 to 15%. Accordingly Table 2 shows the mean values of rng. As the
test data show, no substantial influence of the scale factor and
the kind of material is observed on the relation (II.71).

Over the interval 0.05 <C _ll[ < 1 this relation can with a sufficient
accuracy be expressed by the following equation (Fig. 58):

ny — G;)‘“ (11.72)

For values of the ratio I:h>1 the coefficient ng can with
a sufficient accuracy be taken to be unily. For values of the ratio
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Fig. 58. Dependence of coefficient ny on the ratio I : 4

1 : h < 0.05 this coefficient was not investigated since the correspond-
ing processes have no practical application. It may be assumed
that for small values of the ratio I:h the coefficient will in-
crease to a cerlain finite value; this, however, exceeds in
practice the quantity corresponding to equation (I.98) which was
derived for the problem of a flat die being indented into a semi-infi-
nite solid.

In Table 2 the particular values of p and p’ are given for the
strain & = 7% (for which the curves showing the dependence of p’
and p on the magnitude of strain become flat).

To illustrate the physical meaning of the coefficient ng, curves

p=f (%) andp=f (%) were plotted from these results for lead

specimens of height » = 22.5 mm (Fig. 59).

The rise of the curve of p’ when the ratio I : & increases clearly
reflects the increase in the specific pressure as a result of the external
friction- whose influence is taken into account by introducing the
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coefficient rg. Consequently,
p' = 2kng (I11.73)

where % is determined from equations ([.48) and (1.71).
Solving simultaneously equations (II.71) and (II.73) we obtain
p = 2knong (I1.74)
Since the value of the mean specific pressure occurring during
rolling is usually expressed in the general form by the equation

p = 2kng (I1.75)

where n, is the coefficient of the state ol stress,
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and p' = 7§ (%) for lead

Fig. 59. The relations p = f T
test pieces of height 2 = 22.5 mm for a strain e = 7%

the Lests carried out enable us to split this general cocefficient into
its component parts, representing it in the form

Ng == NgNghg (11.7(3)

where ng is the coefficient reflecting the effect of tension on the
specific pressure.

in the gencral form the effect of the value of the ratio [/ : 4 on the
specific pressure can be represented diagrammatically by curves
(Fig. 60), from which, when appropriate values of ng are used for
the case of rolling, we may draw the following practical conclusions:

(a) when rolling is carried out without tension and with small
reductions, and when the ratio [ : i <7 1, the effect of the external
friction is small and it can be neglected (for example, during the
first passes in plate and blooming mills); in this case the mean

8—0662
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specific pressure is given by the portion AB of the curve (Fig. 60),
and it can be calculated from the formula

p = 2kn’, (11.77)

(b) conversely, when rolling is carried out without tension, using
large reductions, and when the ratio [ : 4 > 1, the effect of the outer

Em | A Ratling ¢
== == Upsetiing 7

— Ratio L/h

Fig. 60. Variation of the resistance to deformation with the ratio
l: h for rolling and upsetting

zones is practically absent, whilst the influence of the external fric-
tion becomes considerable; the portion BC of the curve corresponds
to this case, and the specific pressure can be determined from the
well-known relation

p = 2kng

V. Lugovskoi, cousidering the two-dimensional deformation
of a plate compressed from both sides by narrow dies (Fig. 61), when
the slip lines intersect the entire cross section of the plate, arrived
at the conclusion that the specific pressure depending on the ratio
ean be expressed by the equation

p 2k (1.25%+1.2510ge§_0.25;) (11.78)

This equation is valid when the ratio [ : /A varies in the range
1> 7lL— > 0.118. When the ratio [ : 2 = 0.118 the slip lines cease

to intersect the cross section of the plate, the slip line ficld of each
die becomes independent, and in this case equation (I1.78) gives
the same value of p as the equation of Prandtl (I.99).

A comparison of the values of p calculated from equation (II.78)
with the experimental data gives good agreement, and hence this
equation can be recommended for the calculation of ng along
with equation (I1.72).
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V. Pushkarev has investigated the effect of the outer zones on the
specific pressure during the rolling of special test pieces which
consisted of two parts joined together by an interlay. One
part of the test pieces was made shorter so that for a given
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Fig. 61. Compression of a thick Fig. 62. Variation of the coeffici-
plate between two narrow dies ent n); with the ratio I : hy:

I—compression (A. Tselikov and
V. Smirnov); 2—rolling (V. Pushkarev) -

reduction when the metal filled the geometrical zone of deforma-
tion there were no outer zones.

The results of these tests substantiated the conclusions given
above: the outer zones cause an increase in the specific pressure
when the ratio I : A becomes smaller than 0.5 to 1. But at the
same time a very important phenomenon was established: the
effect of the outer zones on the increase in the pressure is less during
the rolling of the metal than when a part of the strip is compressed
(Fig. 62). It should be noted that this phenomenon is a fundamental
feature of the process. As was pointed out above, during rolling
when D cos o > h, there is a tendency for longitudinal tensile
stresses to appear at the surface of the strip at the entry and exit
sides of the rolls. As a consequence a partial localization of the com-
pressive stresses takes place at the point of entry and exit, with the
result that the increasc in the resistance to deformation caused by
the outer zones will be less pronounced than that occurring when
a part of the strip is compressed.

The influence of the outer zones on the pressure of the metal on the
rolls during the rolling of billets was investigated for the first time
by E. Rokotyan.

8%



16 INTERNAL AND SURFACE

In analyzing the results of his detailed measurements of the metal
pressure on the rolls of blooming mills, he noted that the specific
pressure during the first passes is higher than during the subsequent
ones, when the ratio [ : 2 becomes higher. E. Rokotyan represented
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Fig. 63. Variation of the mecan specific pressure with I: k, when
rolling blooms of different cross sections and different stecls:

I—Dblooms, 160 X 160 mm and 170 x 170 mm, weighing 6.5 tons, sticel
Cr. 6; 2—bloom, 255 X 310 mm, weighing 3.1 tons, steel CT. 3; 3—Dbloom,
170 % 170 mm, weighing 6.5 tons, steel Ct. 4; £—Dbloowm, 160 X 160 mm

the results of these investigations in the form of graphs, one of which
is shown in Fig. 63. According to these investigations the minimum
specific pressure during the rolling of blooms occurs not when ! : & =
~ 1, as was the case with compression, but in the interval [:h =

l
—r L |

}

h -

7. 4 ?
(a) (6)

Fig. 64. Diagrams for compressed test picces with 7: 74 = 0.08 to 1.0:

(a) neglecting the effect of ihe outer zones; (b) including the cffect of the
outer zones

= 0.3 to 0.55. A. Chekmarev and others arrived at these results
whilst investigating the pressure of the metal on the rolls of blooming
mill 1150.

In order to clarify the influence of the outer zones on the resistance
to deformation during rolling in section mills, we can use the results
ol the experimental investigations of M. Brovman. Ile compressed
lead test pieces between two dies of square, rhombic, round and
flat form. In order to determine the effect of the outer zones, he com-
pressed both short test pieces whose length was less than the length
of the dies (Fig. 64a) and long test pieces. In the latter case the
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test pieces were compressed by dies of various length so that the
ratio I : A varied from 0.08 to 1.0.

The results of these investigations given in Fig. 65 show that
the effect of the outer zones for square, round and rhombic sections

26
2.4 \
N 4
w22 N ——
20 \\
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0737 0z 03 04 05 06 07 08 0§ 10
Ratio L/h

Fig. 65. Variation ol the coefficient % (the cffect of the outer
zones) with the ratio of the lenglh of the arc of contact I to the depth
of rolled scetion 2 (M. Brovman):

1—sirip of square cross section; 2— stiip of round cross section; 3—strip
of rhombic cross section; 4—-slrip ol (lal cross section

is considerably smaller than for the compression of a rectangular
section whose width is considerably greater than the depth.

11. POSITION OF THE NEUTRAL SECTION

In the lexthook treatment the position of the neutral section,
and, consequenltly, the magnitude of the forward slip are determined
from the condition that the specific pressure and {friction forces
are uniformly distributed over the arc of contact, when the sign
of the latter changes at the ncutral section.

The analysis of the contact friction forces and pressure presented
above (see Figs. 44, 45, 46 and 53) confirms that whilst averaging
the specific pressurc is still permissible to a good approximation,
the assumption that the specific friction forces are constant, both
over the zone of backward slip and over the zone of forward slip,
is far from reality. This method of calculation is particularly far
from the truth in the case of rolling with the ratio [ : &, < 2, when
over the entire arc of contact the friction forces vary approximately
as two triangles.

This circumstance was considered in 1952 by V. Smirnov, and
he suggested that in determining the neutral section the effect
of the zone of sticking be taken into account.
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We shall determine by a similar
method the position of the neutral
section in the diagrams of friction

\.
AS

2 forces shown in Figs. 44, 47 and 48,
il i.e., for the case of rolling which
% is characterized by a well developed
(%% zone of sticking.
o To solve this problem we shall
A o set up the equation of equilibrium.

We project all the forces applied to

£ the metal being rolled on to the di-
G
ol Al 18 rection of its motion (Fig. 66). Then
T a
Pz‘/ I ( ZX — \ D sin@rde -
Jpa:' 0
s YE
I S T cos ordg - & 1 (singp —
T PE PF
—siny) cos grdg —
i AE @y
v — \ tcos grdy (I1.79
1 ‘ [ )

' | B
where
2k

N=7 (sin @ —sin @F)

Fig. 66. Forces acting on the rolled

) istributi f - .
metal an&g??ﬁ%ﬁoﬁ fli)rlcobg o eom and v is the angle of the neutral

section.

To simplify the subsequent solution of this equation we assume
that p, = p,, = const. and that T over the segments ¢ = 0 to @p
and ¢ = @g to oo equals the mean friction force for these segments:
T = 1, = const.

Then

— Pm (1 —cos a) + Ty, (sin ¢ —sin ¢ —sin @) --
—{—% (cos 2¢r —cos 29g) —nrsiny (sin@r—singg) ==0  (11.80)

Subsequently assuming that t,, &~ k£ we obtain the equation for
calculating the angle of neutral section:

. 1, . . . 1
siny = & (sin a —sin g —sin @r) + - X

COS2QE—COSEQp __ Pm (4 __gosq) (I1.81)
sin @ g —sin ¢p 2T, )
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After studying the extent of the zone of sticking where deforma-
tion is slowed down, and discovering simple methods for determin-
ing its boundaries, i.e., the angles ¢z and ¢p, this equation
should have a practical use for a more exact calculation of the
angle of necutral section and forward slip.

If the ratio of the angle of contact to the mean thickness of the
rolled strip is much greater than 3 to 4, the effect of the region where
deformation is slowed down and friction forces vary as a triangle
may be neglected. In this case

PR Qr =Y
and then equation (11.80) assumes the form

2t —(1—cosa) fr_ (11.82)

and if we assume that 1,, = pp,, it transforms into the expanded
equation of S. Ekelund:

siny = Hhe _ 1—cosa (11.83)

siny =

In this case if, on the contrary, the ratio of the arc of contact
to the mean depth of the cross section of the rolled section is small
(I:h, <<2), then the region where deformation is slowed down
will occupy the entire arc of contact (Fig. 48), i.e

gg=0a and @p=0
Substituting these values of the angle into equation (I1.80) we can
determine the angle of neutral section from the equation
. ___sina T Pm
siny =—; (1—cos a) Tsing (I1.84)
The quantity mr sin o in this formula represents the sum
of the friction forces at the points A and B, i.e., nr sin a« = 14 -
4 1p. Then equation (I1.84) assumes the following form:

siny = Siga — (1 —cos a) T—Ij_mr— (11.85)

AT 'B
Correspondingly the extent of the zone of forward slip is given by
Lo~ rsiny=0. 5(|/rAh M ) (I1.86)

If we put 14 + T = 2up, in this equation it coincides with
the equation of S. Ekelund and gives the extent of the zone of forward
slip when the friction forces have a constant value over the entire
arc of contact:

s OS([/;A/;— o (11.87)
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12. FORWARD SLIP

Forward slip is the excess of the exit velocity of the rolled
strip over the peripheral velocity of the rolls. It is of great impor-
tance when continuous mills are being designed, not only as regards
their draught and the rotational speeds of the rolls, but also the
torques required for their rotation and the forces tensioning the
strip between the roll stands.

The magnitude of the forward slip may be expressed by the ratio

(11.88)

S L'1 = Uy
Ur
where vy is the exit velocity of the metal, and
v, is the peripheral velocity of the rolls.
In practice the forward slip is usually determined by measuring
the difference of the distances {; and [, between the impressions of two

[ = h

Fig. 67. Mecasurement of the [orward slip using marks
on the roll surface

marks on the strip being rolled and between the marks on the rolls
respectively (Fig. 67). Since the time of rotation of the roll through
an angle formed between the marks equals the time taken for the
metal to pass through the distance I;, the forward slip on the basis

of equation (II.88) can bhe expressed by the equation
s=ha—l (11.89)

I

In the case of hot rolling, when [ is measured after the metal has
cooled down, a correction must be made for the temperature
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shrinkage:
L= L[+ a (B —0)]

where ¢, and ¥, are the temperatures during the rolling and
measuring respectively, and
a is the coefllicient of lincar expansion due to
temperature rise.
For a carbon steel the value of this coefficient can be taken as
follows:

Temperature

interval, °C Caoelficient «
0-1,200 (15 to 20) 10-6
0-1,000 (13.5 to 17.5) 108
0-800 (13.5 Lo 17)10-6

Theoretically the magnitude of forward slip can be found dependent
on the position of the neutral section. Considering the problem as
two-dimensional and proceeding from the condition that the volume
of metal per second is constant, we have

hav, cosy=hw,

where £, is the thickness of the rolled strip at the neutral section.
Substituting the ratio v, : v,, obtained from Lhis equation, into
equation (I1.88), we get

§o Iy, ;';os Yy 1 ([[.9“)
1
Since
/in. - hl . 2" (1 — COS Y)
L92r (] — 3 V)
S = h_i_‘w cos 'Y — 1
hi

Substituting

1—cosy7:2sin2%

into this equation we obtain

s;(‘z—Zcosy—1>2sin2—\2L (I1.91)
52
Since cos y in practice is close to unity, and sin? % ~ 34—, then

§= ———O .)>y (I11.92)

In rolling thin strips, Where r is considerably larger than Aq,
the second term in this equation may be neglected in view of the
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fact that it is small in comparison with the first, which gives the
formula of D. Dresden:

§ = y? (I1.93)

1

This formula has widely been used to calculate the forward slip.
But when the value of the ratio r : 4, is about 0.5, the formula yields
inaccurate results, and accordingly in these cases it is advisable
to use equation (11.92).

We shall now consider the cffect on the forward slip of a non-
uniform distribution of the velocity of motion of the metal across
the section and the presence of a zone of sticking, a consequence
of which is that the forward slip continues beyond the limits of the
geometrical zone of deformation.

The non-uniform distribution of the exit velocity of the rolled
metal across the section of the strip and the effect of this phenom-
enon on the forward slip were first pointed out by A. Rodzevich-
Belevich, A. Golovin and A. Vinogradov. Subsequently this problem
was investigated in detail by N. Sobolevsky.

We assume that the rolling is two-dimensional, that is, it takes
place between smooth rolls, and the strip is characterized by a con-
siderable width in comparison with the length of the arc of contact
so that the effect of spread may be neglected. The thickness of the
rolled strip relative to the arc of contact is not very large and the
reduction of the metal extends completely over the entire thickness
of its cross section.

Since in the middle portion of the arc of contact there is a zone
where the slip of the metal over the rolls is absent, the velocity
of motion of any point A (Fig. 68) of the metal being rolled, located
on the contact surface in the zone of sticking, will be equal to the
peripheral velocity of the rolls v,.

The horizontal projection of this velocity is

Uxa = Uy COS Py (11.94)

where ¢, is the angle between the line connecting the centres
‘of the rolls and the radius drawn to the point A.

When this point A emerges from the zone of sticking its speed,
because of forward slip, begins to exceed the peripheral velocity
of the rolls, and in the next zone of deformation extending beyond
the limits of the contact surface, this velocity will increase further
owing to the stretching of the surface layers of the metal, until
the velocity

vy=(s+1)v, (11.95)
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or
vlzﬁiur cos y (11.96)
1

has been reached,
where s is the final value of the forward slip

h, is the depth of the neutral section

hy is the depth of the section of the metal at the exit

vy is the angle of neutral section.
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Fig. 68. Velocity distribution of the metal across the thickness

of the strip for forward slip, and the variation of the velocity in

the external deformation zone of the strip (abe) and in the internal
zone (adc)

In. Fig. 68 this variation of the velocity of the surface particles
(not sides) of the metal is represented by the curve abe.

Let us consider the velocity of motion of the metal at the middle
portion of the cross section of the strip at the neutral section on the
basis of its definition. We may assume that the velocity of motion
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of the rolled metal across its thickness is distributed uniformly
and is equal to
Uy -=UrCOSY
The volume per second of the rolled metal passing through any

section, including the neutral section, must be constant and equal to
h
X

Vo hwa=hw, \ vedy=ho, (11.97)
’h

)

where A, is the depth of the section z-z, and
Vym 18 the mean velocity of motion at this section.
Taking into consideration that
Ry, cos @y < v, cosy

as remarked already, the mean velocity of the rolled metal in sections
to the right of the neutral section is higher than the velocity of a
point touching the rolls:
Vxm => Uy COS @y

Thus, to the right of the neutral section the velocity of the inner
portion of the rolled strip is higher than the velocity of Lhe outer
layers:

Vxp > Uxa

If the law of distribution of the velocity across the thickness
of the strip is known, vy, = f (y), then the value of this velocity
could be found from the equation

T2
\ f(y) dy = hwv,

For example, if we assume that the velocity across the thickness
of the strip varies along a parabola, then

UxB—UxaA 2
Y
UM

Substituting this value of f (y) into equation (I1.97) we oblain

Ux ;:f(y) == UxB—4

hx

2
v ' UxB—Vxa
[N EE- = P
) - I

'x

2
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or
g

- (2vap 1 vxa) = [y 1 2r (1 —cos @)] v, cos

where r is the radius of the roll,
From this the velocity of the metal at the centre of the cross
section of the rolled strip is

3. ny-+2r(1—cosy) 1 )
Uxp= [7/\ By 2 (1—cos g,) 0S¥ — 3 Cos rpx] v, (11.98)

It is not difficult to see that, independently of the selected func-
lional law of velocity variation across the thickness of the strip, as
we move away {from the neutral section the difference of the velocity
of motion of the metal particles at the centre of the cross section
of the strip and at the points where it touches the rolls increases,
reaching a. maximum at the boundary of the zone of sticking.
In Fig. 68 the character of the increase in the velocity of the motion
of the central portion of the strip is shown by the curve ad. When
the zone of sticking approaches the plane passing through the axis
of the rolls, and, if we assume that in equation (II.98)

¢y -0 and }21—:(1—c0s v) xS
then the exit velocity of the metal at the central portion of the
strip is
vy o vp(15-1.5s)

Since in this case Lhe exit velocity of the outer layers of the strip
touching the rolls equals v,, their velocity will be considerably
lower than the exit velocity of the central portion of the strip.

Over the last region of deformation, i.c., over the contactless
zone of deformation at the exit, as has been mentioned above, the
equalization of the velocities of the central and outer layers of the
strip takes place. During the equalization of the velocities the outer
layers of the strip are subjected to tension, whilst the inner layers
are subjected to compression and at the same time to deceleration,
s0 that their velocity is approximately reduced

from v, (1--1.5s) to v, (1-+5)

At the other boundary of the zone of contactless deformation at
the exit the equalization of the velocities is complele, and the final
value of the forward slip of the outer and inner layers of the strip
is the same.

On the basis of the analysis of the relationship of the exit
velocities of the metal at the surface of the rolls and at the centre
of the cross section of the strip, we can thus draw the conclu-
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sion that at the plane of exit the forward slip of the inner layers
is greater than that of the outer layers. The ratio [ : k,, exerts great
influence on the difference of the forward slips. In the case where
this ratio is large (more than four) the difference of the forward slips
is very small, but if this ratio is small (less than two) and the zone
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Fig. 69. Velocity variation of the metal across the thickness of

the strip for forward slip when the compressive strain does not

extend into the entire cross section. The upper part of the figure

shows the velocity variation in the external deformation zone (abc),
the central zone (ac) and in the intermediate zone (adc)

of sticking begins to occupy the entire zone of farward slip (Fig. 53c),
then the forward slip in the plane of exit ol the central layers of the
strip will be nearly 1.5 times as large as the final overall forward
slip, whilst the forward slip of the outer layers will be zero. In this
case the forward slip is greatly intensified in the contactless zone
at the exit, where an acceleration of the outer layers of the strip
takes place owing to tension, whilst the inner layers are decelerated
owing to compression.
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A similar phenomenon, i.e., a non-uniform distribution of the
forward slip across the thickness of the.strip is observed also when
l:h,<<0.5to1 and the compression does not affect the whole
cross section. The results obtained for the outer layers of the
strip touching the rolls remain completely valid for this case of
rolling.

The velocity of the inner layers of the strip, however, follow
a completely different law. Owing to the fact that the compressive
strain does not penetrate the whole cross section of the strip, an
elongation of its middle portion takes place as a result of a pull
by the layers subjected to the compression. Accordingly, on the
right-hand side of the neutral section (if we assume that the velocity
distribution in it is uniform), the velocity of the inner layers of the
contact zone of deformation must be less than the velocity of those
portions of the strip which are subjected to the deformation. In the
next zone of deformation (contactless) these velocities are equal,
having the value

vy=0p (13- 5)

Fig. 69 shows an approximate distribution of the velocities of
motion of the metal across the thickness of the strip and the graphs
of the velocity variation over the zone of deformation: in the ouler
layers of the strip (curve abc), in the layers located on the axis
(curve ac) and in the intermediate layers (curve adc).

13. THE EFFECT OF TENSION ON FORWARD SLIP

Tension has the greatest effect on forward slip in comparison
with other technological parameters. This circumstance consider-
ably simplifies the control of continuous mills which operate with
tension between the roll stands, and at the same time has a practi-
cal interest in the study of the effect of this factor on the forward
slip.

The forward slip with the effect of tension taken into account
can be calculated from equation (I1.92), if the angle y in this equa-
tion is determined from equation (I1.79), taking into consideration
the variation of the normal and shear contact stresses caused by the
tension.

However, such an approach to the problem is complicated, since
when the variable value p, is substituted into equation (I1.79)
with the effect of the tension taken into consideration, cumbersome
expressions appear which are ill suited for practical calculations.
Because of this we shall solve the problem in a simplified form, assum-
ing that:
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(1) the specific pressure over the entire arc of contact is expressed
by only two equations: one for the zone of backward slip and the
other for the zone of forward slip;

(2) the same applies to the contact friction forces;

(3) the neutral section is located very close to the maximum spe-
cific pressure, and the difference of the positions of these two sections
may be neglected.

With such premises the position of the neutral section can be found
as the point of intersection of the curves expressing the specific pres-
sure in the zones of forward and backward slip.

If we consider the case of hot rolling, then the friction forces
acting over the regions of slipping are close to the quantity 4. Then
with a degree of approximation we can assume that from the equa-
tions of specific pressure given above (I1.63) and (I11.64) or (IL.65)
and (I[.66) will be the most appropriate for the given case.

We find the position of the neutral section, assuming that when
h, = h, the values of the speciflic pressure p, determined by equa-
tions (I1.63) and (I1.64) are the same, that is,

2k — 04 - —La: log. /—— =2k —op-- k - 10ch

tan —5 tan >

where 0,4 and op arc the tensile slresses at the entry and at the
exit respectively.
Defining 6, and §; by the expressions

0.5

- = (S a“d : E 6 1.99
G+Y ’ tanl J (I )
2
we obtain
/ Eo—E1 )
tn oot ( Io>oom (11.100)
i | 7”2/£— A 2/1—0'3
where g == 5% and g = T
Since in calculating the ratio ]— from this equation the angle y is
H

. . o>
as yet unknown, an approximate value of this angle y (say, 5 or —)

4
should be substituted into equation (I1.99).
If the arc of contact is equated to a single chord, then 6, ~ §; =~

xﬁ and equation (I1.100) assumes the following form:

Ah _—
hn _ JE0=E) 5 o /o (I1.100a)

111 hl
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It is interesting to note that when op = o,

hn, /E

TV R

. . h . .
Knowing the ratio h—" we can determine the angle of neutral section:
1

hll_hi I V. a
e =Tsiny tan o
or
. / h
siny - VL:TT (,’I_T_ 1> (I1.101)
Substituting the value ol siny &~ ¥y into equation (11.92), we obtain
hi hp 2

3*(/“ 0. )rTh W“O (11.102)

In the case of cold rolling (more precisely, when the position
of the neutral section is calculated) instead of equations (II.65)
;md (I1.66) we can use equations (I1.31) and (I1.32), i.e., when

= KPx-

As in the preceding case, we assume that when %, == h, the
values of the specific pressure calculated from both the equations
will be the same, i.e.,

2k [ (EsB— 1) <ho )50 . 1‘| 2k (§161 ‘ (h,, )61

For the sake of simplification we assume that

6o~ 8 ~ 6=

(02
tan Y
and rewrite this equation in the following form

@84 1) () =2 (32 s — 1) (42)" =0

whence we obtain

h,

17/ 14+ (Ed—1) (58-+1) (2

Z_n:{ 1/ Og ' ( )’ (I1.103)
1 1

2k—o4 _2k—opg
o and §=—%— .

After the ratio Z—” has been calculated the angle of the neutral

where g, =

1
section and the forward slip are calculated in the same way as in
the preceding case, that is, from equations (I1.101) and (I[.102).

9-—662



130 INTERNAL AND SURFACE

Curves plotted from equations (I1.102) and (I1.103) are given
in Fig. 70, showing the effect of front tension on the forward slip
during rolling with different coefficients of friction. It is seen from
the figure that when the coefficient of friction diminishes the forward
slip becomes sensitive to tension. _

Experimental investigations have been carried out by a number
of scientists into the effect of tension on the forward slip. The results

as
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Fig.70. The Effect of the front tension ¢ 5 on the forward slip when rolling
with different cocfficients of friction (?ﬁ = 0.5 and %‘:0.005> :

< o
(HDp=0.1; () pn=20.2

of these investigations confirm the correctness of the equations
(11.102) and (II.103) derived above (Figs. 71 and 72).

When the tension varies within the limits used in practice (approx-
imately %{?:0 to 0.4) the forward slip can be expressed by a linear
law; this was pointed out by D. Morozov and N. Druzhinin:

S =S8yt u0p
where s is the forward slip when tension is absent, and
o is a coefficient characterizing the angle of inclination of

the straight line to the horizontal axis in Figs. 71
and 72,

Expressing the forward slip in this equation in terms of the veloc-

ity we obtain
Uy -=0Up (1 -+ Sp-+ Qil T1>

where v, is the peripheral velocity of the rolls
Ty is the total tension (T, = 0,.0))

Q1 is the cross section of the rolled strip at the exit from
the rolls.
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The investigation carried out by N. Druzhinin on a three-high
continuous mill into the effect of the -simultaneous action of the
front and back tensions on the forward slip is of great interest. On
the basis of the test results he arrived at the conclusion that in
practice the forward slip can be expressed not only as dependent

S, %

15

y/
! JV/
/%/ 2

=

o 0 20 30 40
Or, kg/mm?

Fig. 71. The effect of the front tension on the forward slip when
cold rolling steel band (N. Druzhinin):

I—experimental curve; 2—curve plotted according to equations (11.102)
and (I1.103); 3—straight line

on the front tension, but also as dependent on the difference between
the two tensions (front and back) when they act simultaneously
(see Fig. 72). Accordingly, when the tension does not exceed appro-
ximately (0.6 to 0.7) 2% the forward slip can, in practice, be expressed
as dependent on the front and back tensions (7'; and 7, respective-
ly), thus:
Ty—Ty
S-:8) . @—f— (I11.104)
<1
where s, is the forward slip when tension is absent
o is the tangent of the angle of slope of the straight line
to the horizontal axis
Q, is the cross section of the strip at the exit from the rolls.
Then the exit velocity of the metal from the rolls is given by

vy = (s-=1) v, :<1—‘r so+aT1aT°>v, (I1.105)

To simplify the calculation of the forward slip when the effect
of tension is taken into consideration Y. Fainberg proposed a for-

9*
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mula based on equation (II.78), but in solving it he introduced
a number of assumptions.

In the first place, in the same way as in deriving the formula of
Ekelund (I1.83), the assumption was made that the value of the
contact normal and shear stresses is constant over the arc of contact,

Forwara slip s, %

— —T =
] o | !
- 6 J
5 o
4
Y
X
; 4 /
i /o,
| 3] 7
‘ | P d
| 2
‘ 52
t | %( S
o ! 1] 1
H x
vl

500 400 32177 200 100 0 106 200 300 400 800
Difference of tensions T,-Ty, kg

Fig. 72. Dependence of the forward slip on the difference between
the front and back tensions (7'y — 7'y) when cold rolling steel strip,

with Ay = 1.44 mm; A 0.27 and b = 15 to 20 mm (N. Dru-
0

zhinin):
crosses—test results; circles—cquations (11.102) and (11.103); the straight
line is shown by dash line

but their sign changes at the neutral section. Furthermore, Y. Fain-
berg assumed that tension does not lead to a change in the specific
_I1—To
) 2
tion (I1.79) after integration and cancelling assumes the fol-
lowing form:

pressure. With such assumptions, noting that 2 X - , equa-

. . T\—T
cosa—1--psine—2usiny:-= A2
P H Y 2bpr

from which
sina I—cosa Ti—Ty

siny=-—5—— % -+ T (I1.106a)
or, according to (II.87),
. _ 1 A Ah_ Ti_TO
siny =5 (Vrdh— 30 ) + 7 s (11.106b)
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where r is the radius of the rolls
b is the width of the rolled strip
P is the mean specific pressure.

In reality the specific pressure depends strongly on the tension,
and in the case where the front and back tensions differ much from
cach other, the values of the specific pressure in the zones of back-
ward and forward slip are also unequal. In this case calculations
based on equations (11.106a) and (I1.106Dh) can lead to inaccurate
results,

14. STRESSES ON CONTACT SURFACES MOVING
WITH DIFFERENT VELOCITIES

We shall consider two-dimensional rolling of a strip belween
smooth rolls rotating with different peripheral velocitics. In this
case the rolling process becomes unsymmetric relative to both rolls:
the roll possessing the higher peripheral velocity acquires additional
activity, whilst the other roll is transformed into a brake. In solving
this problem we proceed as we did in Section 2 (see Chapter II),
i.e., we isolate an clement from the rolled metal between two planes
drawn parallel to the plane passing through the axes of the rolls,
and consider its equilibrium. If the element is located in the zone
where the rolls tend to slip along it in the opposite directions, then
the friction forces will act in different directions. Hence

Z Xoi(oy doy)(hy-i-dhy)—oyhy—2p langdx- -
‘rdzr—vdx -0 (I1.107)

or
Ty -
doy—(py—0y) 0
fiy
Separating the variables we obtain
doy  dhy
Px—0x  hy

[f we assume that
Pe—0y- 2k and do, dps

then after integration we have

px i o i A
D5 —log,hy -C (11.108)

We put p, == pa and h, = h, in the initial section passing
through the point 4 where the friction forces begin to act in differ-
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ent directions. Then

px=pa—2kloge I,'l—‘ (I1.109)

From this equation it follows that, over the region where the
[riction forces are directed oppositely, the specific pressure does
not undergo large changes and will vary little when %, diminishes.
In this conncction it is interesting to follow the variation of the
specific pressure curve as the difference of the peripheral velocitics

Ve > Uy

Fig. 73. Variation of the specific pressure due to difference between
the peripheral velocities of the two rolls:
(1) V=0 (2) v, > Uy where v, equals the mean velocity of the metal in
the section at point B, and v, is the velocity of the metal in the section at
point A; (3) the same (vr > vn) but with V=045 T
metal in the scection at point A,

n is the velocity of the

of the two rolls increases. If the rolls have the same peripheral
velocity and the rolling process is symmetrical, then the specific
pressure may approximately be expressed by the diagram shown
in Fig. 73. When the velocity of the lower roll diminishes, the
zone of forward slip on it will increase, and the point determining
the beginning of this zone will be displaced from the neutral section
to the point A. Then, beginning from this point, the specific pressure
can evidently be expressed by equation (11.109), i.e., by the curve ab.
The diagram will thus be cut off, whilst the zone of forward slip
on the upper roll will diminish and the point C; will be displaced
from the neutral section to the point B. For a further reduction
in the velocity of the lower roll the point B will be displaced further
and it can occupy the position of the point B,; thus the zone of for-
ward slip on the upper roll will disappear altogether. In this case
the curve constructed from equation (II1.109) passes through the
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points b, and a4, and the specific pressure reduces to a minimum. The
zone of forward slip on the lower roll will increase and its boundary
with the zone of backward slip will be determined by the point 4,.

Thus from what has been said we may conclude that with the
appearance of a difference in the velocities of the two rolls the specific
pressure is substantially reduced whilst the contact friction forces
are increased. At the same time the specific pressure diminishes
until the zone of forward slip disappears from the roll having the
higher velocity, as shown in Fig. 73. This limiting difference in the
roll velocities can clearly be found from the equation

Uy €08 Qb g, = Uphy
i.e.,
o hray ©08 a1 (11.110)
Un hy )
This method of determining the specific pressure can also be used
in the design of mills for the longitudinal rolling of tubes, when
they are deformed between a roll and a moving or stationary mandrel.

15. DISTRIBUTION OF CONTACT STRESSES ACROSS THE WIDTH
OF A ROLLED STRIP AND SPREADING

If we assume that oy, = p, then from equation (1.68), the
specific pressure is

20,4
P
where o3 is the stress in the metal being rolled, perpendicular
to the vector p.

Thus, the distribution of p across the width of the rolled strip
is dependent on the variation of the stress o5 across the width of its
cross section, and, consequently, on the distribution of deformations.

In this connection it is neccessary to consider the spreading in
order 1o determine the contact stresses. The spreading, like the
distribution of deformations across the thickness of the rolled strip
(which has been discussed above), is greatly affected by the outer
zones.

The action of the outer zones of the strip on the spreading consists
in a tendency to equalize the stretch, i.c., the deformations in the
longitudinal direction of the central and side portions of the rolled
strip. Because of this action of the outer zones the longitudinal
tensile stresses arise not only in the side portions of the strip in the
contact zone of deformation, but also in the side portions of the
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strip which are located in Lhe contactless zones of deformation both
at the entry and at the exit. In the zones next to them longitudinal
compressive stresses arise; in all the sections considered in the outer
zones of the strip these stresses are balanced by tensile stresses.

Experimental investigations have established that owing to the
phenomenon just described the outer zones cause a considerable
reduction in the spreading; in particular, at the ends of the strip, as,

rig. 74. Displacement of zones (shown dotted) where metal is
spread by the action of the outer zones

for example, A. Chekmarev and I. Pavlov pointed out, the spreading
is always greater than over its main portion.

In this connection we attempt to clucidate the cause of the effect
which the longitudinal tensile and compressive stresses in the outer
zones have on the spreading.

We denote the longitudinal stresses acting at the points A and B
(Fig. 74) by 04 and op.

Since tensile stresses arise as a result of the influence of external
friction, the compressive stresses o, in the zone of deformation are
greatly reduced and owing to this the lines where the longitudinal
and lateral stresses o, and o, are equal will not pass through the
points A, D and B; they are displaced a little from the outer zones
and take up approximately the position of the lines £G and GF
(Fig. 74).
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Thus, the influence of the outer zones is exhibited by the reduction
of the regions where the metal tends to.spread, as a result of which
the spread itself is considerably reduced.

Similar effects on the spread are shown also by the back and front
tensions which are used in cold rolling; as they are stepped up the
spread is reduced.

If the stresses o4 and o become sufficiently large and the maximum
specific pressure does not exceed the quantity 2k, then the regions
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Fig. 75. Variation ol metal velocity across the strip width:
(1) wide strip; (b) narrow strip

where the metal tends to spread vanish and spreading is nearly
completely absent. This phenomenon was, for example, observed
by the author in developing multiple-roll mills for cold rolling
of strip, where owing to a considerable tension and a small roll
diameter spreading was almost completely absent, and in certain
cases even became negative.

From the analysis of the effect of the outer zones on spreading
and from the conclusion that in connection with the tensile stresses
the zone of spreading diminishes, it follows that the outer zones
greatly affect both the distribution of stresses and strains across
the width of the rolled strip and the spreading process itself. The
outer zones, preventing the development of spread, are at the same
time subjected to the action of considerable stresses which equalize
the elongation of the middle portion of the strip as well as of the
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Fig. 76. Variation of the longitudinal
stress 6, across the rolled strip width
at entry, in mid-course and at exit for
different b, : ! ratios (compressive
stress denoted by a positive sign, ten-
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cdges. Accordingly the value of
the tensile stress which arises in
the edges as a result of spreading
must be the greatest on the boun-
daries of the contact zone of defor-
mation with the outer zones, i.e.,
close to the points A and B (see
Fig. 74). In the zone of spreading
itself these stresses are obviously
less; they are partially localized
by the external {riction.

Tests carried out by the au-
thor in rolling test pieces covered
with lacquer show that, in deed,
along the edges of the outer zones,
over a distance more than half
the length of the arc of contact,
considerable tensile stresses ap-

pear.
The appearance of tensile
stressesat the edges of the

outer zones allows us to assume
that the velocities of motion
of the metal across the width
of the strip are distributed ap-
proximately according to the
diagrams shown in Fig. 75a and
b. But as the spread requires an
additional volume of the metal,
at the edges of the strip we ohserve
an increase in the velocity at
the entry and a decrease in the
velocity at the exit. These ve-
locities are completely equalized
at a certain distance from the
rolls, which does not exceed the
approximate thickness of the
strip.

We can assume that the lon-
gitudinal tensile and compressive
stresses arising in the planes of

entry and exit as a result of the action of the outer zones are
distributed across the width of the strip approximately as shown
in Fig. 76. In doing so we must distinguish between three typical

cases:
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(1) a narrow strip (b, << ~ I): owing to the small width of the
strip"the compressive stress at its middle is in the form of a narrow
triangle (Fig. 76a);

(2) a strip of medium width [b,, =~ (1 to 4)I]: the compressive
stress is distributed over a wider portion at the middle of the strip
(Fig. 76b);

(3) a wide strip (b,, > ~ 4l): the compressive stress which equi-
librates the tensile stress does not extend over the whole central
portion of the strip owing to the large width of the latter, but is
localized 1in the regions adjacent to the zones of tensile stress
(Fig. 76¢).

Following these patterns for the distribution of longitudinal
stresses across the width of the rolled strip we may also represent
the distribution of the specific pressure across its width, using
equation (I.68) (Fig. 77). Here we also distinguish between three
types of specific pressure diagram which correspond to the cases
of rolling with the different b,, : | ratios shown in Fig. 76. At the
same time the boundaries between these cases must be determined,
which depend not only on the ratio b, : [, but also on the reduction,
the angle of contact, the coefficient of friction, and still other factors.

The characteristic feature of all these diagrams is that at the
edges of the strip the specific pressure is considerably less than
in its middle portion; at the points A of entry and B of exit
(Fig. 77) the specific pressure at the edges of the strip is less than
2k, owing to the presence of longitudinal tensile stresses.

Numerous experimental investigations have been carried out
1o determine the actual distribution of specific pressure across the
width of a rolled strip. All of these have been based on measuring
the specific pressure over the arc of contact at different distances
from the edges of the rolled strip. From the results of these meas-
urements a three-dimensional diagram has been constructed char-
acterizing the variation of the specific pressure both over the arc
of contact and across the width of the rolled strip. Oune such
diagram is shown in Fig. 78.

The results of these experimental investigations agree with the
theoretical data given above concerning the distribution of the
specific pressure across the width of the rolled strip. Close to the
edges of the strip the specific pressure is considerably less than in
its middle portion, and not only in the region adjoining the neutral
section but also at the entry and at the exit.

Experimental investigations carried out by I. Astakhov into
the distribution of the specific pressure across the width of the rolled
strip showed that the maximum pressurec is not always located
in the middle of the strip. When wide strips are rolled (with a

width slightly exceeding 5}/ 7AR) two pressure maxima appear,
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Fig. 78. Three-dimensional specific pressure diagram, plotted from
cold rolling test results for aluminium, with 7y == 2 mm; Ak = { mm;
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localed approximately (1.5 to 2.5) l/rAh from the side edge
(Fig. 79). The investigations of I. Astakhov thus confirm the
correctness of the theorelical results given above (see Fig. 77).
[. Astakhov also carried out experimental investigations inlo
the effect of the non-uniformily of elongation on the distribution
of the specific pressure across the width of the rolled strip. He rolled
test pieces of different form and with a different character of the
elongalion distribution across their width. In all cases a reduction
in the specific pressure was observed at those points of the test

(a) (6) (c) (d)
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Fig. 79. Variation of the specific pressure across the width of
rolled specimens in the plane p,q. for different ratios ol b, : /. with

Al o
D = 150 mm; hy=1.4 mm and —]1—:0.2_’ (I. Astakhov):
0
(@ bo: 183, (b) ba: IX5.8; (¢) bog:1x4.6; (d)byg:1l=x2

picce where the elongation was less than the mean value and where,
consequently, longitudinal tensile stresses appeared owing to the
influence of the outer zones (Fig. 80). At those points of the lest
piece where the clongalion was greater than the mean value, con-
versely, an increase in the specific pressure was observed because
of addilional longitudinal compressive slresses.

The zones where the mefal tends to spread, shown in Fig. 74,
do not characterize the actual volume of metal displaced in the
direction of the edges of the strip. Owing to the influence of the
outer zones, which has previously been mentioned, a part of the
metal of the strip located in the edge zones deforms in the longilu-
dinal direction, and, conversely, owing to the longitudinal compres-
sive stresses arising along the edges of the rolled strip (Fig. 81),
the displacement of a certain volume of metal will obviously take
place, spreading beyond the limits of the side zones.

But the investigalions carried out by B. Bakhtinov and in more
detail by the author, and afterwards by A. Grishkov, showed that
these side zones—in spite of their provisional nature—nevertheless
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provide a starling point for calculations of the actual spreading.
In the first place, we may show how the formula for spreading is
deduced, and not merely drawn from empirical data, which is very
important for educational purposes. In the second place, it enables
a more accurate formula Lo be obtained in comparison with existing
ones.

We assume thal the entire volume contained within the boun-
daries of the side zone ABD (Fig. 81) is deformed in the direclion
of spreading; we may then assume thal when the secction ac,
located at the distance z -I- dr from the exit, is displaced by the
amount dz, i.e., when it is displaced into the position bd, the follow-
ing equalion must hold for the clementary displaced volumes:

1

2

iy
D)

hodz 22 L zaxdn, (11.111)

where dh, and db, are the reduction in the depth k. of the cross
seclion of the rolled slrip and the incre-
menl of its widlh b, respectively when the
section ac is displaced, whilst
z is the distance from edge of the strip to the
assumed boundary of the edge zone al the
section &d.

The minus sign in the right-hand side of the equation shows (hal
b, increases with decreasing #h,.

This equation is clearly valid whether the spreading takes place
as a result of lateral slip or whether the side surfaces are trans-
formed into the conlact surfaces, as reported by P. Polukhin.

From equation (If.111) we find that

. dhy
dby = —2z e

(11.112)

The relation belween z and k, can be found from the condilion
that on the boundaries of a side zone, on the one hand, and on those
of the zones of backward and forward slip, on the other hand. the
values of the mean lateral stresses o, and the mean longitudinal
stresses 0, across the thickness of the strip must approximalely
be equal.

Livery variation of o, will at the same time be met by an equal
variation of o, at the corresponding point of the boundary of the
zones. Thus, if over the entire boundary of the zones o, = o,, then
along this boundary their differentials must also be equal: do, = do,.

According to equation (I1.9) do, can approximately be expressed as

do, = <2k F = dhe

tan ¢ hy

(11.113)
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where % is the resislance 1o pure shear, and
T, is the friction force acting on the contacl surfaces in the
longitudinal directlion.
In a similar manner we find do,, assuming that tan ¢ = 0 in
equation (I1.113):
do, =52 dz (I1.114)

where T, is the specific [riclion torce acting on the conlact surfaces
in the lateral direction, and

h, is the depth of the cross section of the rolled strip, which,

when any point located on the boundary of the zones

is considered, in conlrast to i, remains constant over

the shaded portion (Fig. 82).

-

Fig. 82. Ranges of values of the cuantities h, and h; occurring
in equations (II.113) and (II.114)

—— e B

I qualing the right-hand sides of equations (II1.113) and (I1.114) we

obtain
. 1 N dh, -
dz — ( — dmp e (I1.115)

For an approximate solution of this equation and for simpler
final results, we may assume that

T, ~p2k and T,xT,
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In addition, in determining the boundaries of the edge zone with
the zones of backward and forward slip we equate the arc of contact
to a chord. Then

tantp:—% and dz:(%—?ﬁ) /z,><%h.i (I1.116a)

and after substituting hy == hy - A—h z we obtain

dz - 1) hy— 2 (11.116b)

Iy —'——x

Aftler integratling this equation, substituting the value of z thus
obtained into equation (II.112) and once more integrating we obtain
the equation which specifies the variation of b, dependent on z.

The results of this derivation as carried out by the author confirm
that the spreading, in the main, develops up to the neutral section;
over the portion of the edge zones adjacent to the zones of forward
slip the spreading is negligible.

Accordingly in a practical calculation of the spreading that part
of it which occurs in the zone of forward slip may be neglected.

Integrating equation (II.116b) we obtain

l 1 h ~
g=( — ——— hl]oge———o (1T.117a)
< Ah 2u > hi—{——Ai
After substiluting z into equation (I1.112)
hy + Ah
2 Ah [ ~
dby = ( > loge——o— dhy (IL.117b)

The quantities k, and , appearing in equations (I1.112) and (I1.117a)
may be cancelled out since their values along the line AD are the same.
We express dh, in terms of dz:

i = b4 2r (1 —cos @) = hy--4rsin T~ -2 (11.118)
Then
dhy =22 dx

We substitute the value of dh, just found into equation (I1.117b)
and find the width of the strip in the region of deformation at
a distance r from the plane passing through the axes of the rolls:

hy +- Ah z
4 Ah YT
72—(1_-%_) S z log,——— dz (11.119)

10662
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The quantity I — :\—:: in this equation represenls the doubled

length of the zone of forward slip. Hence it follows that the spread-
ing is proportional to this zone.
We shall use the following substilution in equalion (IT.119):

by + Ah

z

hy
Then

! Ihy |
T ,\_/,(hoy—/ll) and dzx .T]‘l)_dy

After subslituting these values of r and dz into equation (I1.119)
and integrating, we have for the region AC (Fig. 81):

Al // /
by <l )l: Xﬁl' (U 5% ~1\‘ log. y—

—0. 23"_0 y 1]C (1120

We find Lhe quantily C from tLhe condll.lon that when = [,
«=by and y 1.
Then

AR N dhohy

r g ¥
he — by Kl S W;;—[y(().oTy—l>l()g0y——

=
—0.2;);_?(;,2‘1),;/_1] (11.121)

This equation shows how the width of the strip being rolled varies
in Lthe zone of deformation dependent on x, without the influence
of (he outer zones being taken into consideration.

Fig. 83 represents Lhe variation of the width of the strip in the
zone of deformation; this has been calculated [rom the above equation
for the case of rolling of a strip (hy 100 mm and A, == 60 mm)
between smooth rolls with a diameter of 720 mm and different
coeflicients of friction (p =+ 0.3, 0.4 and 0.5). For the zone of forward
slip the variation of the width may be calculaled from an equalion
analogous lo equalion (I1.121), which is derived for this zone.

From Fig. 83 it follows that the spreading in the zone of lorward
slip is very small, as has been pointed oul above, and Lhal in practi-
cal calculations of the overall magnitude of the spreading nol only
the varialtion of b, may be neglected over this region, but we can
assume thal equation (II.121) is valid for the entire arc of conlacl.

Substituling y =- 7{—‘ (for = -= 0) into equation (I1.121) we oblain
0
the theoretical formula from which the spreading may be calculated
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without the effect of the outer zones being taken inlo consideration:

Al Ah O
(V:Ah— o )/ ( (11.122)

\/L Ty N2 Ity 2y .
f< ) 2 (Ih-) log, -~ -1 1 (11.123)

Owing to the fact thal the righl-hand side of Lhis equalion con-
tains the difference of similar quantities, particularly, when small

where
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Fig. 83. Variation of the spreading in the deformation zone in the absence of the
offect of the outer zones, as predicted by equation (11.121) and the analogous
cquation for the zone of forward slip (g 100 mm; 2y = 60 mm and /) = - 720 mm)
when various coefficients of friction are considered. The points of inflexion o1y, 1,
and .1y refer Lo the position of the neutral seclion:
(1) == 003 () p=20.4; (3) =035

reduclions are used. compulations in it must be carried out wilh
an accuracy of .\‘0\'0|‘0[ duimdl places.

When the lcduclion L 0.9 the

approximated by Lhe oquall()n

\/L e VA
()~ 0276 ( )

The formula (II 123) can also Dbe simplified by the following
(ransformation. Mulliplying and dividing the last two terms of the

2AN0
right-hand side of this formula by T A

a = — 4Rk Ah 2Ah
T T oARe 2h; AR

AL
value f (——' \/. can also be
g

(11.124)

we obtain:
— 2Ry

10%*
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The second Lerm in this equalion can, with sufficienl accuracy,
be represented as:

24k ol
Thy AR 08T
After substituting this into equation (I1.123) and cancelling we
obtain

f< Al ) zO.Bloge#
i

hg

then equalion (I1.122) for the spreading can be representled as fol-
lows:

o (1A AL hg o
Ab_O.o<l/rA/z o ) log, 7 (11.125)
that is, when the effects of the width and tension are not taken into
account the spreading equals the product of the length of the zone
of forward slip by the deformation:

ho
log, Ty

The theoretical calculation of the effect of the width of the rolled
strip constitutes an extremely complex problem whicl as vel remains
completely unsolved. We shall give here merely the basic proposi-
tions concerning the spreading of narrow and wide rolled slrips.

When the width of the rolled strip is approximalely equal to the
length of the arc of contact or less than it, the zones of deformation
where the metal tends to spread will meel from both sides of the
strip (Fig. 84). In this case over the region C{D, the quanlily z,
entering equation (I1.112), will be equal to

by

2

the spreading over the region C,D, can approximalely be expressed as

dby dhy

by hy

(11.126)

or
logebr ~—1log.hy-:-C

We {ind the quantily C from the condition thal at the poinl C, the
width of the rolled strip equals b, whilst the depth is Ac.
Afler substitution we obtain

he

hy

1ogef—g ~ log, (I1.127)



STRESSES IN ROLLED METAL 149

This equation can also be obtained from the law of constant
volume if we assume that over the region C.D, the deformalion of
the strip in the direction of its lenglh is absent:

he ) o
by & be - (11.128)
tx

The varialion of the width of the strip over the region AC,
(Fig. 84), in the case of rolling of a narrow strip, can be found from

Fig. 84. Zones where the deformation of the metal tends to spread
when a narrow strip is rolled

equation (I1.121) derived above, if we assume that for this region
Ah
:1 —
y=1+ Ty %¢

In the same way we can find the variation of the width of the
strip over the region D,B, assuming that

] Ah T
Yn == i lh1 D

Here z, and z;, are the distances of the points C, and D, from
the plane passing through the axes of the rolls.
The position of these points can be found from equations (I1.116b)
and (II.117a), if we assume that
in the zone of backward slip
2
z -be and hy=he =~ hy —{—ITC

and in the zone of forward slip
zh
z--bp and hx;:.lzDzlz]-LT
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The diagram of the zones where Lhe melal tends to spread, given
in Fig. 84, confirms that when the width of the strip is reduced
to slightly less than the length of the arc of conlact, the spreading
diminishes.

In the case where Lhe width of the rolled strip slightly exceeds
the lenglh of the arc of contact, the aclion of the longitudinal
stresses 04 and op (see Fig. 74) arising in the edges of the rolled
strip becomes more effective.

These stresses, as has been shown above, reduce the spreading.
Consequently, as the width of the rolled strip is increased [urther
the spreading will diminish, but there is clearly a certain limit
afler which the stresses 0, and o cease Lo increase with the width.

The cifect of tension on the spreading during hot rolling was
first experimentally investigated by V. Kalinin. Strips of
various cross sections (rectangle, angle and channel) were rolled
in the mill and subjected during the rolling process to either front
or back tension by means of a hydraulic cylinder provided for this
purpose.

A low carbon steel served as the material for the rolled strips.
The rolling temperature was 950°C. The tension varied from 0 Lo
8.6 kg/mm?; at higher values of the tension a break occurred in Lhe
strip.

As a result of these investigations it was established thal front
tension exerts no significant influence on the spreading, even al len-
sions causing a break in the rolled strip.

Back tension, on the other hand, exerls a very considerable
influence on the spreading, causing a necking of the rolled strip.
It has been established that at the approach of the metal to the
rolls a zone of necking appears where the width and depth of the
cross section of the rolled strip are slightly reduced (Fig. 85).

Owing to the presence of this zone the actual width of the strip
entering the rolls will be less than b, For this reason the overall
value of spreading b, — Ab obtained is considerably smaller than
when rolling the metal withoul back tension:

Ab < Aby

The results of these investigations, oblained by rolling strips
of rectangular cross section and dimensions 15 < 25 mm made oul
ol steel Cr. 3 and using a reduction of 5 mm (33%) at temperatures
ol 900 to 950°C are shown in the diagram (Fig. 86). It follows from
this diagram that the preliminary necking at the approach of the
metal Lo the rolls, Ab , appears when o,> 3 kg/mm?, and when
0y ~ 7 kg/mm? it rcaches approximately 1.5 mm. The overall
necking, i.e., the reduction in the spreading due to (ension,

Ab, = Abg— Ab
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appears at once when tension is applied, and when 0, ~ 7 kg/mm?
it increases up to 4.5 mm; then the spreading is reduced from 5.6
to 1.1 mm, i.e., aboul 5 times.

:
L

. N T
S S
4 gh
. /17T S
Sledl
7, o <~ & Direction
—— o | ;
| of rolling
|
TS
N
Zone g, Contact
necking zone

Fig. 85. Zone of necking of a section when rolling with the
.back tension Ty (V. Kalinin)

Similar results were obtained by V. Kalinin in rolling carbon
steel strip and channel sections with tension.

The conclusions presented above, concerning the influence ol the
outler zones on the spreading, as well as the results of experimental

aby,
i T
©
3t by
<
<
2_
,_
. T

72345678
Oy, kg/mm?

Fig. 86. Effect of back tension on necking when a rectangular
section of steel Cr. 3 is rolled at 900 to 950°C (V. Kalinin)

invesligations, confirm the complexity of this problem. This problem
can, however, be solved in a simplified form, if we take the formula
(IT1.125) as a basis, which takes into account the effect of a number
of factors on the spreading, such as: reduction, roll diameter, coef-
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ficient of friction and others; the influence of the strip width and
tension can be taken into account if we introduce appropriate coef-
ficients into this equation.

Consequently, the following formula may be recommended for the
calculation of spreading:

Ab - 0.5C,Cq ( V rAh—

3’: ) log, j‘% (11.129)

where €, and €, are coefficients taking into account the influence
of the width and tension of the strip.

On the basis of the theoretical data and the results of experimental

investigations the effect of the width on the spreading during the

rolling of rectangular sections in smooth rolls may approximately

be represented as a coefficient dependent on the ratio bo

Vran’
in accordance with the curve shown in Fig. 87.
12
G:'Z&
~
08 AN
g N
S
806 \\
S
o4 1 7 3 4 56 7
Ratio 22
VrAh

Fig. 87. Variation of the coefficient Cp with the ratio of strip
width to the length of the arc of contact

For the calculation of this coefficient the following approximate
formula may also be recommended:

5

0.15——20_
cb:1.34( % —O.15>e Vish 4 0.5 (11.130)

V'ranr

A. Grishkov gives more accurate values of this coefficient, basing
them on his experimental studies, where he established that the

coefficient C, depends not only on the ratio -l/boﬂ but partly
r

on the reduction as well. At the same time the maximum value
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. o . . b .
of the coefficient is close Lo 17% == 1 only for small reductions
ran .

(about 15%). As the reduction increases it is displaced towards the

left (Fig. 88). Furthermore, it was discovered that when _L,%l>
-
> ~ 3.5 the coefficient Cy becomes equal to the relative reduction.

1) — <7 —
70 N
a8 V \ o < |
WY N~ 2%
4 \ T
é // \./5} 3‘5\%_
az -~

as 10 15 2.0 %5 30 35 40
Rat g
GLOm

5 88. Variation of the coefficient Cp with the ratio of the strip
width to the length of the arc of contact when rolling with different
reductions (A. Grishkov)

In connection with the above A. Grishkov recommends the following
formula for the determination of Cy:

1.5 0.15———00_
Co— 4 1_f)(VmL_045}e ( ”Nj+e

where e is the relative reduction.

In determining from Fig. 86 the second coefficient, which takes
into account the effect of back tension, we can start from the
condition that when o, == 0 the value of C, is unity, and when
0y =~ 0., C; = 0. Equating the curve showing increase in necking
as the tension increases (Fig. 89) to a straight line over the region
of integration, we obtain

(I1.131)

CsAby= Aby,— “Dtana
(l
where o is the angle between the straight line and the horizontal
axis.
From this
Cy=1— 200 ., tana

A

Oq Abo

(11.132)
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in approximale calculalions we can obviously assume that

Co 1—200 (11.133)
Oa
Besides these formulas, which have been derived theoretically,
there exists a large number of other formulas, in the main empirical
or derived from rough assumptions as Lo the displaced volumes.

ab, T
o
o e
% 4 S
© 3
y
7
Z
s«
7S 20,
— =4

Fig. 89. Determination of the coefficient (4

In deriving these formulas and in developing the calculation
(heory of spreading in general four basic stages should be pointed oul:
(1) in the last century the spreading was calculated as proporlional
to the linear reduction;
Geuze's formula:
Al) s CGA/I,

(2) at the beginning of this century the spreading of stecl was
calculated as not only proportional to reduction, but also to the
length of the arc of contact;

Petrov’s formula (1917):

Ab - Cp—
Siebel’s formula (1927):
Ab . Cx 2R Y

Ak 1// Al

(3) the spreading is not proportlonal to the entire arc of contacl
but only to the zone of forward slip;
Bakhtinov’s formula (1950):

= Al AT Ah \
Ab- 1.10W<l//Ah— )

and Gubkin's formula (1947):

A/z Yasrw A/L Al
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(4) the spreading is calculated theorelically; il depends also on the
extent of the zone of forward slip, and, in addition, on the logarithm
of strain, the width and tension of the strip [the formula (I1.93)

of the author, and the formula (I1.98) simplified by A. Grishkov].

L8 1
Ah=const.
16 2
' /
14
S
X 712 — S
3 //‘#\.\'\\
g) 10 // N Jyx\
S #
- AN
N // N |
a8 P Ay
3 o \
g hy=const.
S) hy =const.
x 06
S
N

)
N

IS
N

ar az 03 04 05 06 07 08 03 10
Relative reauction Ah/hy,

. N . . A VN V'
Fig. 90. Variation of the index of spreading V) with = when
' AR o
Al const; by const.and &y const:
continuous lines: Chizhikov; dash lines: Siebel’s formula with ¢ = 0,53

There are also ollier methods of assessing the existing formulas
for calculating the spreading. Some of them are not justified. Thus,
for example, Y. Chizhikov in his wrilings evaluates a number
of existing formulas for calculating the spreading, the criterion
heing to what extent the results of calculation, obtained from this
formula or other, coincide with the three typical curves shown
in Fig. 90. These curves were constructed by him, varying the index

, . Ab . . . .
ol spreading, A0 N accordance with the relative reduction, when

cither Ak is kept constant (first curve), or hy is kepl constant (second
curve), or hy is kept constant (third curve). This method of analysis
is incorrect since a number of other factors, strongly affecting the



156 INTERNAL AND SURFACE STRIESSES IN ROLLED METAL

spreading, are not taken into consideration, particularly the diameter
of the rolls, the angle of contact, the coefficient of friction, the
ratio b,: }/ rAk and others. It was shown above (see Fig. 88) that
as the ratio by : | rAh varies the spreading can increase fivelold,
keeping the quantities Ah, hy and k constant. But if on the graph
(Fig. 90) curves, calculated from Siebel’s formula for Cg == 0.53, are
plotted showing the variation of the ratio Ab : Ak with the reduction,
then these curves nearly coincide with the curves of Y. Chizhikov.

Thus, the analysis of the formula for calculating the spreading,
recommended by Y. Chizhikov, is essentially based on Siebel’s
formula which has long been superseded in the theory of spreading.
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Resistance

to Linear Deformation

and Pure Shear

1. BASIC FACTORS AFFECTING RESISTANCE
TO DEFORMATION

The normal siress, arising al the contacl surface of the material
being worked and the tool. also called the specific pressure, is alfected
by a large number of factors. All these factors may be divided into
1wo groups.

The first group consists ol those faclors which afiect the mechan-
ical properties of the malerial, i.e., the resistance to lincar (simple)
deformation, o,, or the resistance 1o pure shear, k. Apart from the
natural propertics of the metal itself, this group also includes such
factors as temperature, work hardening and strain rate. To the second
group belong the factors which influence the state of stress of the
metal as it is worked. i.c., the contact friction forces, the outer
zones, the tension and other such factors.

In this chapter only the factors of the first group will be consid-
cred, i.c., those which determine o, (k;) or £ as dependent on the
yield point.
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According to Nadai's equation, Lhe effect of these factors can in the
general case be expressed as:

do 25T 22 de s St 0% du (I11.1)

The first term of Lhis equalion takes into account Lhe effect of the
temperature 7 on the resistance to deformation, the second takes
account of the work hardening resulting from the deformation g, the
third takes account of the relaxation with the time ¢, and the fourth
takes into account Lhe increase in the stresses o with the strain rate
when the viscosity of the metal is considered.

The laws necessary for the solution of this equation are as yel
little studied, and therefore in practice the effect of these factors
musl be taken into account by introducing corresponding coefficients.
In the case ol a linear state of stress Lhe actual yield stress in simple
compression. or lension (k;) may be delermined [rom equation
(1.48), i.e.,

Oq = NNy p MO (I11.2)

where ny, ng, and n, are the coefficients accounting for the effect
ol lemperature, work hardening and
strain rale on the resistance Lo deforma-
lion, and
0. is Lhe vield stress for the metal when

lested under static  condilions,
i.e.. by means of the usual testing
machines.

When o, is substituted into equation (I.48) or (IIL.2) it must
be remembered (hat for certain metals (he resistance lo plastic
compression is higher than the resistance to tension. In parlicular,
according lo the invesligalions by IS. Siebel and A. Pomp, the
stresses for plastic compression ol steel are approximalely 10Y%
higher than for tension, whilst for the compression and tension of
copper and aluminium these siresses are nearly the same.

It follows from this (hat in calculaling o, for sleel in the case
of compressive strain, which also includes rolling, when the yield
stress g, Is determined in tension, this stress must be increased
by 10%.

When the strain is two-dimensional, the resistance to deformation
should be determined not from o, i.e., the actual resistance to simple
compression or tension, but from Lhe resistance to pure shear k [sec
equation (1.71)]:

o280~ 0.57Tnnpnn,o, (I1L.3)
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2. THE EFFECT OF THE TEMPERATURE OF THE METAL ON
THE RESISTANCE TO DEFORMATION

To calculate the forces arising during hol rolling the effect of
temperature on Lhe yield stress or ultimate sirength must be known.
According to cerlain experimental invesligations the dependence

s
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+ d
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Fig. 91. Variation of the ultimate strength of a steel containing
0.15 to 0.55% € with the temperature (M. Vratsky and
1. Tfrantsevich)

of the mechanical properties of metals (ultimate strength and hard-
ness) on lemperalure, in the interval hetween phase transformations
can be expressed in exponential form:

P - Me—nT (111.4)

where P refers (o the mechanical properties of the metal (ultimate
strength, hardness, outflow pressure, ectc.)
T is the absolule temperature, and
M, m are constants depending on the nature of the given
metal.
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This law was established for the first time by K. Ito from investi-
gations into the hardness of various metals at different temperatures.
Subsequently this law was confirmed and used in practical cases
by anumber of other investigators; it was then found that the temper-
ature dependence.of the yield point and the ultimate strength
can also be expressed in an exponential form. According to this
law, if the logarithm of hardness or ultimate strength is plotted
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Fig. 92. Varialion of the ultimate strength of stainless steel
(0.29 C; 0.3% Si; 0.45% Mn; 0.015% P; 0.01% S; 8.29% Ni and
17.2% Cr) with the temperature (M. Vratsky et al.)

as the ordinate and the temperature as the abscissa. the relationship
between the hardness or the ultimate strength and the temperature
in the intervals between phase transformations is expressed graph-
ically by a straight line.

This law is of great interest for the theory of shaping metals by
pressure; from it we can assess the temperature effect on the
hardness and the ultimate strength, and, consequently, on the
resistance to deformation. But this law has not yet received
practical application in determining the mechanical properties
of metals at different temperatures. At present this problem is
solved by using data obtained {rom corresponding laboratory
{ests.
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The results of investigations referring Lo a carbon hypoeutec-
toid steel with 0.15 to 0.55% C are shown: in Fig. 91. The essential
feature in the variation of the ultimate strength of hypoeutectoid
steels with temperature, as seen from this diagram, consists in
a certain reduction in the strength when the temperature is reduced
in the interval between the critical points, Ac; to Aecs, i.c., in the
case of P-iron. In addition, the ultimate strength of a carbon stecl
al temperatures higher than 900°C is nearly independent of varia-
tions in the carbon content between the limits from 0.15 to 0.55%.

Similar results were obtained by M. Zaikov when investigaling
the ultimate strength of steel with the carbon content varying
within somewhat wider limits (0.12 to 1.19%).

Special steels possess the most diverse mechanical properties
which depend on their composition. As a rule, the tensile strenglh
of special steels during hot rolling is higher than that of a carbon
steel. In certain cases the strength of special steels in a hot state
can be 4 to 5 times higher than the strength of a carbon steel.

A rough idca as to the effect of the alloying clements on the
mechanical properties of special steels at high temperatures is
given by the investigations, whose resulls are presented in
Table 3 and Figs. 92, 93 and 94.

The data on the effect of temperature on non-ferrous metals are
presented in Table 4. The dependence of the resistance to deforma-

Table 3
Tensile Strength of Alloy Steels vs Temperature
(After V. Vratsky and I. Frantsevich)
Tensile strength Tensile strength
of siecl, Kg mm?2 of steel, kg/mm2
Tempera- Tcmperg-
ture, °C ture, ©
’ chrome- hroeme-
93 D10 OX2  molyo. 9% 010 DX2 frl’(fn"l',‘
denum denum
20) (G2 100 92 55 950 7.2 — — -
GO0 25 27 HE) 34 1,000 6.3 6.0 0.8 5.7
700 15 19 19 19 ;1,050 — — — —
750 14 16 17.3 12 r 1,100 4.5 4.1 4.2 3.7
800 12 13 13 12 1,150 3.7 — — 3.2
850 10 11 — 10.6 1,200 3.0 2.8 2.6 2.5
900 8.8 9.2 9.0 9.0

Note, The clhemical composition of steel 93: 0.1% C; 0.3% Si; 0.3% Mn; 0.9% Cr;
0.025% S; 0.035% P and 3.15% Ni; steel 910: 0.349%C; 0.24% Si; 0.30% Mn: 0.029% S'
0.025% D 1.659 Cr and 3.3% Ni; steel 9X2: 0.95% C; 0.5% Si; 0.25% Mn; 0.029, S
0.035% P and 1.5% Cr; chrome-molybdenum steel: 0.269% C; 0.29% Si; 0.309 Mn;
0.016% S; 0.037% P; 0.70% Cr and 0.12% Mo.

11—-662
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Fig. 93. Variation of the ultimate strength of a refractory
steel with temperature (N. Pik):

AELT (0.129% C; 0.749% Si; 0.39% Mn; 0.01% P; 0.0059% S; 0. 160(, Ni and

17.009% Cr); 3]/1:)9 furodite (0. 1.)"/ C; 0.9% bl 0 3% Mn; 0.01% P;
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0.019% P; 009% S, 9.429% Ni and 18.27% Cr); 3XH25 (0.239% C:
9% Si; U.b% Mn; 25.0% Ni and 21.0% Cr)
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Fig. 95. Effect of temperature on the resistance to deformalion
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Fig. 96. Variation of the ultimate strength of aluminium alloy forgings, used
in the U.S.A., with temperature:
I —alloy 7075-T6 (1.6% Cu and 2.5% Mg); 2—alloy 2024-TU (4.5% Cu; 0,65% Mn
and 1.5% Mg); 3—alloy 2014-T6 (4.5% Cu; 0.9% Si; 0.8% Mn and 0.5% Mg); 4¢—alloy
2618-T61 (2.2% Cu; 1.1% Fe; 1.6% Ma; 1.05%_ Ni and 0.07% Ti); §—alloy X 2219-T6
(6% Cu; 0.3% Mn; 0.1% V and 0.15% Zn)
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0.85 to 1.15% Si); 2—cast HMITAKI-I'-1; 3—hot rolled HMI15; /4—Imanga-
nese cast nickel HMIES (92.6 1o 95.49% Ni - Co and 4.6 1o 5.4% Mn);
5—castl nickel H-1 (99.5% Ni - Co)
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Table 4

Mechanical Properties of Non-Ferrous Metals at Different

Temperatures (After P. Ludwik)

Temperature. °C Temperature, °C
- — Ultimate Ultimate
Metal prelimi- strenglth, Meclal prelimi- strengtlh.
nary an- lest  kg‘mm2 nary an- test kg /mm?2
nealing nealing
Aluminium 350 20 | 11.6 Nickel 900 455 30.2
75 10.0 593 20.6
135 7.65 800 9.20
310 2.60 1,000 4.00
403 1.25 1,100 2.50
50 0.55 Brass 500 20 32.4
600 0.35 200 26.9
l.ead 100 20 1.35 400 11.8
82 0.80 | 600 2.8
150 0.50 800 0.5
195 0.40 Zinc 200 20 11.30
265 0.20 112 7.29
Copper 60X 20 | 22.8 150 5.00
160 | 18.4 | 247 2.25
300 | 13.2 1 330 1.25
53D 4.85 | 400 0.03
650 3.30 Tin 50 20 2.73
793 1.90 53 1.79
970 0.80 100 1.05
Nickel 900 20| 49.3 153 0.65
195 | 44.8 t 180 0.45
200 44.8 i 207 0.25
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tion of aluminium and duralumin on temperature for rolling with
small reductions, when the effect of the external friction is negli-
gible, is shown in Fig. 95.

Figs. 96 to 102 present curves showing the effect of temperature
on the ultimate strength of aluminium and magnesium alloys,
copper, brass, nickel alloys, bervllium and titanium.

3. CALCULATION OF THE TEMPERATURE VARIATION
OF THE METAL DURING ROLLING

The temperature of the metal when it emerges from the prehealing
furnace and during its passage between the rolls of the rolling mill
changes due to:

(1) the loss of heat to the surrounding medium by radiation;

(2) the loss of heat by convection;

(3) the loss of heat (by conduction) (o Lhe rolls, guides, rollers
ol the roller table and other parts of the mill with which the metal
being rolled comes into contact;

(4) the acquisition of heat resulting from (he energy expended on
the plastic deformation of the metal.

Of these four items in the heat balance of the metal being rolled
the first is the most important, since al temperatures higher than
200 to 300°C the cooling of steel is primarily by radiation. At these
temperatures the loss of heat by the metal by convection is
so small in comparison with radiation that il can be ncglected.
This has been shown by a special investigation into the heat
(ransfer from metal to rolls, carried out by G. Ivantsov. Con-
sequently, in practical calculations of the temperature drop of Lhe
metal during rolling only two of the above items in the heal
balance need be taken into consideration, viz., the loss of heat due
to radiation and the gain of heat as a resull of plastic defor-
mation.

The amount of heat which is lost by the rolled metal to the
external medium by radiation is expressed, according to the Stelan-
Boltzmann law, by the following formula:

0 MK%)—(T%y] (111.5)

where F is the surface giving off heat, m?
t is the time of cooling, hr
T and T’ are the absolute temperatures of the surface of the
cooling body, and the surrounding medium, °K
C is the radiation constant of the cooling body,
cal 1004/m? hr (1°K)*.
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The quantity C can be determined from Lhe formula
(/‘ - EC'S

where C, is the radiation constant of an absolutely black body
equal to (4.88 to 5.2) cal 100'/m? hr (1°K)*
e is a coefficient depending on the character of the surface
(when a carbon steel is rolled, this is taken as approx-
imately equal to 0.8).
Hence

C 4% cal 1004/m?hr (1° K)!

The quantity of heal which as a result of radiation is transferred
during the time dt from the cooling metal into the surrounding

medium is
Q- FC | ( 100) (mo> d/ (111.6)

Il we assume that the difference of the temperature of the inner
portion of the strip and that of its surface during the period con-
sidered remains unchanged, then

dQ = Gec dT (111.7)

where G is the weight of the cooling metal, kg
¢ is the thermal capacity, cal/kg °C.

Since the temperature of the surrounding medium is considerably
less than the temperature of the cooling metal, we discard the second
term in the brackets of equation (III.6) in order to simplify the
calculation. Then for a time dt the reduction d7 of the temperature
can he found from the equation

. FrcC o T 4
{1 W@—m) dt (111.8)

from this the temperature drop of the metal over the time ¢ is deter-
mined as follows:

Ty
Ge /100 N4
t e | kT> dr (I11.9)
T
or
[ 0.03: <‘ 000\7 (5229°] (11110}
~ [}
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Hence we find thal the reduction of the lemperature (7 — T4)
for the time interval ¢ is

T T A
To=Ty =Ty / 307CL 1,000 (HL11)
T Ge <

where ¢ is the time in hours.
Substituting € 4 cal 100 m? hr (1°K)* and ¢ == 0.166 cal kg “C
into (his equation we obtain
T,—T, T [11.12
S <| ,000 ( )
BI#

where f,. is  the lime in seconds, and
£ and G are the arca and weighl respectively of 1 metre of the
rolled seclion.

If the time interval is not large and the lemperature drop during
this interval is small, the calculation may be carried out by means
of the formula (II1.8), giving the mean value T,, as the temperalure
ol the metal over the given lime interval. The (emperature drop
is then given by

AT FC 16’6) Alpe (I11.133)
where Aty is the (ime in hours.
For steel

. I fm, 4
AT - O.O()b7T< 100) Atsec (111.14)

where Aty is the time in seconds.

The increase in the temperature of the rolled metal during ils
passage between the rolls, which results from the deformation,
can be determined from the equation

_A(l—0)
AT = T427Gc

(111.15)

where 4 is the work required Lo deform Lhe metal, kgm
a is a coefflicient specifying the proportion of the energy
expended on the deformation that is lost in heating the
rolls and dissipated in the surrounding medium.

The quantity A may be found by various methods (see Chap-
ter VI below). The commonest method for its determination uses
experimental curves of the specific energy expended during rolling,
taking into account the loss of part of this energy in the rolling
mill mechanisms so that it is not utilized in deforming the metal:

A-=270(a;— ay) Gn kgm
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where a; — a, is the specific expendilure of energy per given pass
determined from the curves, hp hr/t
G is the weight, kg
1 is the efficiency of the mill.
Substituting this value of A into equation (II1.15) we have,
taking ¢ 0.166 cal/kg °C:

AT 381 —a)n(a,—ay) (IT1.16)

4. THE EFFECT OF WORK HARDENING ON THE RESISTANCE
TO DEFORMATION

During cold rolling of metals, i.e., when the temperature is
below the recrystallization temperature or when the rate of recrys-
tallization is less than the rate of deformation, hardening of the

160~
L 740 ‘ | 50%

S Preliminary
g reduction }20%/// /20%

N
5(,,/20 N //

L™

. 10%
7 J/ -—"T 0%
/

Specific pressure,
S~
& % o
. 833 8 3

10 20 30 40 50 60
Reduction g, %

Fig. 103. Variation of the specific pressure with reduction for

cold rolled strip (0.1% C) previously rolled with reductions of 0, 10,

20, 30, and 40% (4y =~ 2mm; b = 30 mm and D == 185 mm; lubri-
cant: emulsion) (W. Lueg and A. Pomp)

melal takes place, with the resull thal ils resistance to deformation
is increased. In practice one must give due consideration to this
phenomenon when metals are cold worked, the only cxceptions
being lead and tin, whose recrystallization temperature does nol
exceed room temperature.

To illustrate the effect of strain or work hardening on the resist-
ance to deformation Fig. 103 shows the relationship belween the spe-
cific roll pressure and the reduction during cold rolling of a steel
strip with different preliminary reductions. From this diagram
it is seen that the specific pressure in rolling a strip reduced by
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409% is 1.5 Lo 2 times greater than when rolling without a prelimi-
nary reduction.

Owing to the absence of detailed data on the effect of work harden-
ing on the specific pressure during the rolling of different metals,
this effect is usually judged from the variation of the yield stress
of the metal in question, as the reduction in the cold state is varied.
This variation for cach melal is different; as a rule, the hardening

ai
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Fig. 104, The cffect of the reduction during the cold rolling of mild
steel on the form of the fracture test diagram

ol pure melals is less than thal of alloys, and brass and auslenilic
sleel are particularly susceptible to hardening. The yield stress
increases more rapidly as compared with the ultimate strength as
the reduction increases, and for high reduction it is nearly equal
lo Lhe ultimate strength (Fig. 104).

P. Bridgman, from his investigations inlo the hardening of
steel and other metals at large deformations, arrived al the con-
clusion that the relation belween the yield stress and the true defor-
mation is linear (Fig. 105). By true deformation is meant the
deformation expressed in natural logarithms (see Chapter I,
Section 10). Thus, the effect of strain hardening may be expressed
in the general form as:

0y = 0, aloge - (I11.17)
0

where @ is a coefficient equal to the tangent of the angle of inclina-
tion of the straight line of strain hardening to the hori-
zontal axis (Fig. 105).
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Fig. 106. The effect of the reduction during cold rolling on the
yield point of steel (0.1% C), copper, and zinc (E. Rokotyan)
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Then the coefficient of work hardening is given by
a i
N =14 — log, -+
wh U o, ge T

Since equation (I11.17) has been little studied with reference to
different metals the value of the yield slress as a function of defor-
malion is delermined in praclice from suitable experimental data.

The effect of reduction on the yield stress during cold rolling
of different metals was investigated by Soviel scientists. The resulls
of these investigations are shown in Figs. 106 to 110 together wilh

100 9 e |
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S b / -
§ 75 /.- PRt
[ ] .
: //y\ %
As ] x ds
N
S, 80 /
S / v
7' / x Oy fm/”de/b'/”ﬂtlﬂ”
v A0 from diggram |
T [ ] db
7 10 20 o 30 40
€, %

Fig. 107. The conditional yield stress and the ultimate strength
of steel IX18119; o, and o are the conditional yield stresses for

a residual strain of 0.2%, measured by test diagram and mechan-
ical tensometer (A. Tretyakov)

values of the ultimate strengths of various metals. In these investi-
gations the yield stress at which the specimen under tension
received a residual elongation equal to 0.29% of its initial length
was termed (he yield strength:

Pos

(oF
02 FO

where Py, is the load, kg, corresponding to the residual strain of 0.2%.
F, is the cross-sectional area of the test piece, mm?2
Figs. 111 to 113 show how the values of the yield stress of tita-
nium, zirconium, niobium, tantalum and molybdenum. depend
on the deformation (from data supplied by various investigalors),
whilst Fig. 114 gives the ultimate strength of tungsten.
A. Tretyakov and E. Albrekht have investigated the influence
of reduction in cold rolling on the variation in the mcchanical
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properties of steel and alloys of aluminium and copper. From their
analysis they were able to establish empirical formulas for these
metals which can be used to determine how o4. and o, depend on the
reduction (Table 3).

Table 5

The Empirical Formulas of Tretyakov and Albrekht for Determining
the Dependenee of 64, and ¢, on Reduction

g%&?é Metal Formula

1 Low carbon steel with 0.1 to  0gy- Opg orig-i-1.4e0.6
0.45% C

2 Quality carbon steel (08 Op: Oporig-F2.4e0.64
rimmed; 08 killed; 35; 45 to 50)

3 Qualily carbon sleel Oy " Oporig-i-1.80.8
(Y85 Y10; V12) Ogz- *Ogo orig i-2.980.72

4 Aluminium and its alloys (alu- 6,7 0y gpig-i-0.1¢
minium, 99.5 to 99.99% pure;  Gyy - Oyg orig-i-0.7€0-6
AMIL AM2; 1)

5 Brass (7168; J169; J159) Ob = Op opig +0.68

Goy " Ons orig -+ 1.4e0.57

Note. Reduction & expressed as percentage.

5. DETERMINATION OF STRAIN RATE

The derivative of strain with respect to lime is called the strain
rale, thus

de
U=—- (I11.18)
Since
d?::%
lhe strain rate is
dh 1 .
U=~ (IIT1.19)

12*
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dh
at
of motion of the tool in the direction of the deformation:

dh
dt

The derivative is the linear rate of reduction, i.e., the velocity

Up ==

whilst % is the instantaneous depth of the body being deformed.
Substituting this value of the derivative into equation (I11.19)

we obtain
u=-M (I11.20)

To determine the mean strain rate in longitudinal rolling the
following formulas have extensively been used in the literature:

Ah -
Um %W sec™! (IT1.21)
or
. I/AIL
r

-
~N— .22
Um T Ty (I11.22)

where Ak is the linear reduction
ho and k; are the depths of cross section of the strip being rolled
before entry into the rolls and after exit respectively
t is the time during which the metal remains in the
zone of deformation, sec
v, is the peripheral velocity of the roll
r is the radius of the roll.

In formula (III.21) the mean strain rate was taken as equal
to the ratio of the strain to the time during which the metal remains
in the zone of deformation. Such a representation of the strain rate
is obviously inaccurate and accordingly calculations using the
formula (II1.21) do not yield the correct value of the strain rate.

In formula (II[.22), derived on the basis of experimental
work carried out by S. Ekelund in 1927 to 1929, the value of the
mean strain rate is taken equal to the ratio of the vertical componenl
of the peripheral velocity of the rolls, applied at the mid-point
of the arc of contact, to the mean depth of the cross section, which
hy-+-h

)Z 1 A

Since in reality the strain rate variation over the extent
of the arc of contact is not expressed by a straight line, formula
(IT1.22) also does not yield the correct value of the mean
strain rate. This shortcoming of the formula was pointed out
by N. Kreindlin, and in connection with this he introduced

is taken equal to
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the new formula:

[}
o . Ah , Ilo
_ Zhibrk [(h1+D) hO]H "Floge /1,1 cos a J ([II 93)
e (it D)7a -

where A is the tension
D is the diameter of the rolls
a is the angle of contact, radians.

In this the actual variation of the strain rate is Laken into consid-
eration over the extent of the arc of contact and (he mean strain
rate is determined by integration as the mean ordinate. Accordingly
Kreindlin’s formula should be accepted as completely accurate.

Fig. 115. Determination of the mean strain rate

The drawback of this formula consists only in that it is somewhat
cumbersome and, in addition, gives the mean strain rate over the
arc of contact, and not over its horizontal projection. The latter
would be more correct when solving problems concerned with the
calculation of the pressure of the metal on the rolls.

Bearing in mind what has been said, let us try to eliminate the
shortcomings of this formula.

During rolling the strain rate at any section of the zone of defor-
mation, located at a distance z from the line connecting the centres
of the rolls (Fig. 115), according to equation (II1.20), can be ex-
pressed as:

2v,
Uy ol (I11.24)

" hy
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The velocity of the metal displaced in the vertical direction is
found from the conditior® that the volume per second is constant,
the effect of spreading being neglected:

vy -Uxlan@e= vij:—‘tau ¢ (T11.25)
e

where v; is the cxit velocity of the metal.
Substituting this value of v, into equation (III.24) we oblain

g 20k tﬁh'J (111.26)

The value of the strain rate can be determined as the mean value
of u, over the segment [:

!
1 o
Um = Q Uy dx (I11.27)
0
or, after substitution for u, from equation (III.26),
!
2v4h tan ‘
um;-—li—L K hz(P dz (III_).S)
'0 X
loxpressing
Iy
tan @ = i};
we obtain
ho
y vhy ¢ dhe vy 1 1_>
m i 3 ECT Ty T Ty
liy '
or
vl g Ak 99
Um W— i —_ho (III.—v)

where v; is the exil velocity of the metal
I is the horizontal projection of the arc of contact
r is the radius of the roll
ho is the depth of the strip being rolled at the entry into
the rolls.

This formula was used in the literature for approximate calcu-
lation of strain rate. The results given above indicate that it may
be recommended for a completely accurate determination of the
mean strain rate in longitudinal rolling (neglecting the effcct of
spreading).

This formula gives a value of the mean strain rate which differs
little from the value obtained using Kreindlin's formula; it is,
however, more convenient for practical calculations.



DEFORMATION AND PURE SHIEAR 183

6. THEORETICAL RESULTS RELATING TO THE EFFECT OF VELOCITY
ON THE RESISTANCE TO DEFORMATION.

On the average the strain rate during rolling is usually within
the limits of 1 to 103 sec™.

The cffect of strain rate on the pressure of the metal on the rolls
during rolling has so far been little studied so that there is as yet
no analytical formula which expresses accurately the relation be-
tween velocity and resistance to deformation. At present it is known
only that resistance to deformation increases with strain rate.

One of the cxplanations of this phenomenon is based on the
assumption that plastically deformed metal may be compared
with a viscous fluid, and is thus subject to its laws of motion. If
we proceed from the Newton-Stokes law, according to which the
increase of the internal {riction in the motion of a viscous [luid
is proportional to the viscosity and the velocity of the relative
slip of its particles, then the relation between tle resistance to
deformation and the strain rate may be expressed by the equation

0y = 0o+ MW (111.30)
where 0, and o, are the yield stresses for static and dynamic
deformation

1 is the viscosity of the body being deformed
w is the strain rate.

This assumption, however, does not coincide with the relaxation
theory of Maxwell. Furthermore, experimental investigations do nol
confirm a linear relation between the resistance to deformation and
the strain rate. According to test data an increase in the resistance
lo deformation with the strain rate takes place more slowly
than would be expected from a linear relation. Because of this
instead of equation (I11.30) a number of other formulas has been
introduced, of which the formula of Siebel and Pomp should be
mentioned:

0y =0y +— Bu” (I11.31)
where B and n are coefficients depending on the material, with
n <1, and in particular, for steel not exceed-
ing 0.3.
We should also mention Nadai’s formula

ou:oo+mlogeui (I111.32)
0

where m is a coefficient depending on the material.

These formulas, although they agree better with the test data
than formula (II[.30), ave little suited for practical calculations
in view of inadequate information about their coefficients.
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It is more accurate to take into account the effect of strain
rate on the resistance to deformation analytically, considering two
processes that take place simultaneously: work hardening and
relaxation. The intensity of work hardening as a function of defor-
mation will clearly be characterized at any given instant by the
tangent of the angle of inclination of the tangent line to the strain
hardening curve (Fig. 116). In accordance with the investigations
of P. Bridgman, for most metals in compression the rellation
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Fig. 116. Strain hardening d‘iagram

between the stresses and the actual deformation, expressed as the
. I; . . . .
natural logarithm of %, is linear. Consequently, the intensity

of work hardening for any stage of deformation can be expressed
by the same modulus of hardening D.

As for the relaxation, we assume that it is proportional to the
time of deformation and to the increase in stress due to work hard-
ening. This agrees with the results of an investigation into the
relaxation process which show that the stresses do not fall to zero
but only to a certain value o,. Consequently, the fall in stress
should not be taken as proportional to o, but to o, — ay.

The above discussions lead to the following equation:

doy == D de— A (o, —0y,) dt (I11.33)

where A is a coefficient of proportionality, representing the rate
of relaxation, sec™.
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. . . . d
Transforming this with due allowance for the strain rate u = d—f
we obtain

Ou _p_4%u—0% (111.34)

de uw

In the strain hardening diagram the first term of the right-hand
side of this equation represents the intensity of hardening (tan f)
for the case of no relaxation, i.c., for an infinitely large strain
rate, whilst the second term represents the intensily of relaxation,
i.e., tan § — tan 7.

If the strain rate during the given period is assumed to be con-
stant, then after integration we obtain

D .
— 2 log, (T”—au—%) —e (111.35)

Neglecting the elastic deformation because of its smallness we
find the integration constant C from the condition that for the
residual strain ¢ ==

O‘u = 0"0 = 03

We thus obtain the following equation:

_at

ou=0o+D—(1—e *) (111.36)

This equation accounts for the simultaneous effect of two factors
on the resistance to deformation: the rate and amount of defor-
mation. In order to account also for the influence of internal fric-
tion when the strain rate is varied, we assume that, as suggested
by A. Ilyushin,

0o =0 -+ IMU
After substituting o, into equation (II11.36) we obtain
e

Oy == 0t ‘;' 31|u_:' D % (1 —¢€ ¢ ) (11137)

where og is the yield stress obtained by static tests, kg/mm?2
1) is the viscosity, kg sec/mm?
u is the mean strain rate, sec™l.

Using the results derived above we can readily obtain the equation
of Maxwell, provided we neglect the hardening, i.e., we assume
that D = 0 and that the intensity of the relaxation is proportio-
nal to o,, and not to g, — oy. In comparison with the equation
of Maxwell the essential advantage of equation (111.36) or (1I1.37)
is that it simultaneously accounts for the process of relaxation
and work hardening.
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Using the curves given in Fig. 117 we can compare the data ob-
tained from the formula (ITI.36) with the experimental data of
E. Siebel and A. Pomp, assuming that for lead D = 4.6 kg/mm?;
A = 1/50 sec™; 0y = 1 kg/mm?, as follows from the analysis of
these experiments.

Applying equation (III.36), given above to any two experi-
mental points for which the stress and the degree ol deformation
are known, we can determine the constants D and A [or the metal

g
[
\

~
(]

,
Nt~
V,4

- 4

Resistance to deformation, Kg/mm?
&

e
‘ 1
ur
10 e ]
r
%
255 5 01520 25 a0k

Plastic compression

Fig. 117, The vesistance to deformation of lead at different
strain rates:

I—1.259% /sec; I1I—0.209% /sec; IIT—0.00039 /scc; conlinuous curves refer
to formula (I1I.36); dash curves refer to the experimental results of IS. Sie-
bel and A. Pomp

in question at a given temperature. Knowing these constants we
can calculate from equation (II1.36) the stresses for other velocities
and deformations.

This method has been subsequently developed by V. Persiyantsev
for the case of a variable rate of deformation.

Owing to the fact that the rate of relaxation is strongly affected
by temperature Vitman and Zlatin suggested, as a result of their
tests, the following formula for the determination of oy:

log,

[of
o=m(T—Ty) loge% (I11.38)
where m and T are constants
Ty is the temperature al which the deformation
takes place, °K.
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7. RESULTS OF EXPERIMENTAL INVESTIGATIONS INTO THE EFFECT
OF VELOCITY ON THE RESISTANCE TO DEFORMATION

To delermine the effect of the strain rate on the forces required
several experimental investigations have been carried out; these
may be divided into two basic groups: the investigations of the
first group are conducted directly on a rolling mill when rolling
metal with different velocities, whilst the investigations of the

30

%)
§ 25 ',5’
o3 ,4’0/'O
§ 20 )?'
<
S 15 5
QJ L
S0 Pl o QI5mmin
& V4 o—0 & Omymin
g pc’ ——= 216mymin
< 57 ]

/o i

0 10 20 30 40 580 60%
Reduction

Fig. 118. Variation of the pressure exerted by the metal on the rolls

with reduction during the cold rolling of steel (0.1% C) with dif-

ferent velocities (0.15. 6.0 and 21.6 m/min); Ay = 2 mm; by ==

=30 mm and 72 = 185 mm; cmulsion Jubrication (W. Lueg and
A. Pomp)

sccond group are carried out on testing machines by extending or
compressing test pieces with various strain rates.

Comparatively few investigations have heen conducted so far into
the effect of velocity on the resistance to deformation when metal
is rolled in a rolling mill.

In most of these investigations the metal is rolled in cold state;
it emerges that during cold rolling the strain rate has a very slight
effect on the pressure of the metal on the rolls. We can easily con-
vince ourselves of this, if we consider Fig. 118 which shows the
measured pressure of the metal on the rolls during the cold rolling
of steel (0.17% C) with different velocities (0.15, 6.0 and 21.6 m/min).
The poinls shown in this diagram indicate that an increase in
the velocity from 0.15 to 21.6 m/min,i.e., about 140 times, did not
give rise to an increased pressure of the metal on the rolls.

It may be assumed that if the velocity of rolling is increased
still further (for example, up to 600 m/min), it would have a con-
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siderable effect on the pressure of the metal on the rolls. At the
same time it is necessary to take into consideration that there are
other factors in cold rolling which, as the velocity increases, decrease
rather than increase the pressure of the metal on the rolls. Among
these factors arc, in the first place, a reduction in heat transfer
to the rolls with an increase in the rolling speed (the heat being
released in the metal as a result of its plastic deformation) and
a reduction in work hardening due to this; in the second place, when
the rolling speed is increased the conditions of lubrication of the
rolled metal are improved owing to the increased hydrodynamic
pressure in the lubricant film. As a result of this the effect of the
external friction on the specific pressure is reduced.

This statement was proved by N. Druzhinin and V. Khotulev
who investigated the effect of the rolling speed on the expenditure
of energy when the speed varied over a very wide range; the maxi-
mum speed was 14.05 m/s, nearly 40 times higher than in the tests
of W. Lueg and A. Pomp. N. Druzhinin and V. Khotulev concluded

that the rolling speed has little effect
g
\2

on the energy expenditure (Fig. 119).
A\\
’(\

The investigations carried out by
H. Ford and afterwards by D. Christopher-
son and B. Parsons indicated that the
effect of strain rate depends on the re-
duction of the metal during rolling. In
the case of high reductions a compara-
tively small increase is observed in the
\ resistance to deformation as the rolling
\ speed increases (Fig. 120). The laws ob-
tained by them, however, refer tolow
rolling speeds (up to 2.8 m/s).

The effect of velocity on the resistance
to deformation in the hot state has been
investigated mainly on testing machines.
As a result of these investigations a
considerable effect of wvelocity on the
resistance to deformation was noted at

Qw
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a, hp hr/t
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<
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06 08 1.0mm

Fig. 119. Variation of the
specific energy consumption
in the cold rolling of
1010 mild steel strip for va-
rious rolling velocities; 2p==

= 0.93 mm; ah _ 0.22

to
/LO
0.25; b= 13.9 mm and
D = 60 mm:

1--0.627 m/s (adjusted velocily);
2—14.05 m/s

temperatures exceeding the recrystalliza-
tion point. In certain cases the ulti-
mate tensile strength at high velocities
increases roughly 5 to 7 times in com-
parison with deformations carried out
under static conditions (Fig. 121).
During rolling the strain rate varies
within a very wide range: from 0.5 to
5 sec”! for upsetting mills and up to 100
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to 400 sec™! for continuous thin strip and wire mills. To determine
more accurately the effect of the strain rate, within the limits of
0.5 to 20 sec!, on the resistance to deformation of low carbon
steel at different temperatures, Fig. 122 shows a portion of the
diagram of Fig. 121 on a larger scale.

[t has also been established that the effect of velocity on the
resistance to deformation depends to a large extent on the amount
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Fig. 121, Variation of the ultimate strength of mild steel with strain rate at
various temperatures (A. Nadai and M. Manjone)

of deformation. This phenomenon has been noted above when
deriving equation (111.36).

Detailed experimental investigations of the problem were carried
out by P. Cook, A. Dinnik and others. They made many measure-
ments of the resistance to deformation of test pieces of various steels,
as a function of the deformation at different velocities and tem-
peratures. P. Cook carried out his tests on a testing machine,
plastometer, especially constructed by him for this purpose; by
means of a cam upsetting was effected with a given constant
strain rate despite the change of the height of the test piece during
the upsetting process. The test pieces had cylindrical form and
were prepared from previously annealed round rolled bars. The
dimensions were: (1) by == 25 mm and dy = 18 mm; (2) Ay =25 mm
and dy = 12 mm; (3) by =12.7 mm and d; = 9.53 mm. Test pieces
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of smaller dimensions were used for high strain rates and were prepared
from high grade alloy steel, since the limiting load of the plastometer

amounted to 10 tons. The maximum value of the strain cqualled

log, Z—? = 0.7, which corresponds to the ratio i, : hy == 0.5. At the
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Fig. 122, The ultimate strength of mild steel at different temperatures as
a function of strain rate variation in the range from 0.5 to 20 sec~1; curves
obtained by enlargement of portion of Fig. 121

same time the cylindrical form of the test pieces was retained, which
showed a good approximation to a linear state of stress. To reduce
the effect of the external friction glass as a lubricant was used
which prior to heating was applied to the ends of the test pieces
in the form of a suspension of glass dust in spirit. This enabled
the friction force between the contact surfaces of the test pieces
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and the platens of the plastometer to be held to a minimum. The
. d. .
strain rate w == d_;: during the tests was 1.5; 8; 40 and 100 sec™?,

whilst the temperature was 900; 1,000; 1,100 and 1,200°C. The
results of these tests have been presented in the form of diagrams
(Figs. 123 to 134) which show the variation of the yield stress with
the degree of deformation.

The chemical composition of the steels in question is given in
Table 6.

Table 6
Chemical Composition of Steel (for Figs. 123 to 134)
(After P. Cook)
) Composition, %
Steel
c|Si|Mn\ s | P’Cr|Ni[Mo|W‘V

LLow carbon 0.150.120.68 0.034 0.025 — — - — —
Medium carbon 0.560.260.28 0.014 0.013 0.12 0.09 — — —
High carbon 1.000.190.17 0.027 0.023 0.10 0.09 — — -—
Molybdenum-man-

ganese 0.350.271.49 0.041 0.037 0.03 0.110.28 — -—
Chrome-nickel-mo-

lybdenum 0.350.270.66 0.023 0.029 0.59 2.450.59 — -
Chrome 0.060.220.46 0.019 0.031 0.41 0.17 — — —
Chrome-molybde-

num 0.260.350.57 0.005 0.023 3.03 0.290.49 — —
Silico-manganesc 0.611.580.94 0.038 0.035 0.12 0.270.06 — —
Silico-chrome 0.473.740.58 — — 8.20 0.20 — — —_—
Stainless 18-8 0.070.430.48 — — 18.60 7.70 — — —
tligh chrome (13%

Cr; 2.25% C) 2.230.430.37 — — 13.100.33 — — —
IHigh speed 18-4-1 0.800.280.32 — — 4.30 0.180.55 18.40 (.54

Analyzing the diagrams (Figs. 123 to 134) we notice that in the
case of small strains (on average up to 20-30%) the yield stress
strongly increases as the strain increases. For medium strains (more
than 30%) the rate of increase in the yield stress is reduced, and
in a number of cases the yield stress decreases when the strain is
increased still further. If the results of these tests are represented
in the form of a diagram, with the strain rate on a logarithmic
scale along the abscissa and the yield stress on the ordinate with
the same scale, then the dependence of the yield stress on the strain
rate is expressed by a straight line (Fig. 139).

The results of the investigation into the effect of strain rate on
the yield stress carried out by A. Dinnik are also of great interest;
he investigated this effect for 15 grades of steel. In the same way
as in the tests by P. Cook the test pieces were compressed at a rate
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Fig. 136. Variation of the yield stress of ball bearing steel IIX15
(1.0% C;0.31% Mn; 0.24% Si; 1.549% Cr; 0.1% Cu; 0.018% S and
0.017% P) with the strain rate at various temperatures for a
reduction of 0.3. Sce the upper part of the diagram for the value
of the correction factor corresponding to the reduction (A. Dinnik)
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w = (2 to 41) sec™® in a mechanical press, and al a rate u = (40 to
100) sec! in a drop hammer of the Amsler type. From the results
ol these tests he constructed diagrams one of which is shown in
Fig. 136. The tests by A. Dinnik also showed that the effect of strain
rate on the yield stress strongly depends on the reduction; in contrast
to P. Cook’s results, all his tests showed an increase in the yield
stress as the strain rate increased. The way the yield stress varied
with the reduction is represented in the form of an additional
diagram in the top left-hand portion of Fig. 136, giving the value
of the correction factor .

The yield stress o, for different reductions is then given by

Oy, == NOu3o

where .3 is the yield stress for 30Y% reduction determined from
the main diagram (see Fig. 136).

[. Tarnovsky and others have investigated the resistance of metal
to deformation by extending and compressing of cylindrical test
picces made of steel of 16 grades, as a function of deformation at
four different velocities and al different temperatures (800 to
1,200°C).

The tension teslts were carried oul at rates of ~0.007 and 0.05
sec”! in an experimental press, where also the compression tests were
carried out at a rate of 0.05 sec™. Compression at a rate of 7.5 sec™!
was carried out in a friction press, whilst a drop hammer was used
for a rate of ~150 sec™®. For all steels investigated a considerable
increcase in the resistance to deformation was established for
increased velocities both at small and large strains (confirming
obscrvations of previous investigators). 1t was also pointed out
that, when the velocity was increased, the increase in the re-
sistance to deformation was greater for large reducltions than for
small reductions.

8. DETERMINATION OF THE RESISTANCE TO LINEAR DEFORMATION,
TAKING INTO ACCOUNT TEMPERATURE, WORK HARDENING
AND VELOCITY

During cold rolling the resistance to linear deformation, o,
depends mainly on work hardening. The temperature and strain
rate have a slight effect on o,, and in practice the coefficients n, and
n, in equation (I1I.2), allowing for the temperature and velocity,
may be taken as n; ~ 1 and n, ~ 1.

At the same time it should be noted that in the case of high reduc-
tions a slight increase occurs in the resistance to deformation as the
velocity is increased. These results, however, refer to small veloci-
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ties; at high velocities, as shown by the tests of N. Druzhinin and
V. Khotulev (see Fig. 119), the velocily has an insignificant effcct
on the resistance to deformation.

Then for cold rolling equation (JI1.2) assumes the following forin:

0501 Osy ‘
Og = NypOg = - g O (TI1.39)
where o5 and og; are the yield stresses belore and alter the roli-
ing process.

During hot rolling the resistance to linear deformation depends
mainly on the temperature and velocity. Work hardening or strain
affects the resistance to deformation alongside the velocily, and
accordingly this effect is more conveniently taken into account by
the appropriate value of the velocity coefficient n,. Owing to this,
equation (I11.2) in the case of hot rolling assumes the following form:

Oy = NiNy0s (I11.40)

For determining the cocfficients n; and n, three basic methods
may be recommended.

The first method should be used for the rolling of those metals for
which data exist concerning the effect of velocity on the yield stress
and deformation at hot working temperatures. Then the values
of these cocefficients can he obtained from the diagrams constructed
from the test data (see Figs. 123 to 136). Since the effect of velocity
on the resistance to strain depends on the temperature, then from
these diagrams we find not the value ol each of the above-mentioned
coefficients, but the value of their product:

Oq == NiNyp0s -~ Oy (I11.41)

where o, is the yield stress oblainable from the diagrams (see
Figs. 123 to 136) or from the data of other experimental investiga-
tions for the given rolling conditions: strain rate, temperature and
reduction. The quantity o, refers to the resistance to linear defor-
mation at the beginning and the end of the arc of contact. Accord-
ingly for the strain rate, temperature and reduction we must also
take mean values over the arc of contact.

The corresponding strain rate must be calculated from equation
(I11.29), whilst for the determination of the mean reduction the
following method may be used.

The relative reduction in any section of the deformation zone is

o by (I11.42)

x ho

The mean value of the relative reduction may be determined as
its mean value over the length /. where [ is the horizontal projection
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of the arc of contact (see Fig. 115):
!

1 ¢ ho—hy .

em = | S da (I11.43)
0

The quantity £, appearing in this equation can be expressed as:

Al
hx o= }11 —}— -_‘[\2L 12

Then
I
Ah z2
[-j,n == W S <1 —‘l—2> dx (III'44)
0
or
- %?‘,—fj (I11.45)

When the curves of Figs. 123 to 135 are used, the mean reduction
found from this equation must subsequently be recalculated as
the mean strain, i.e., as the strain expressed as a natural logarithm:

/ ho ~ 1 e
\logcm)n ~ log, ——1_%$ (I11.46)
3 hy

The second method of determining the coefficients in equation
(LI1.40) is less accurate. It can be recommended in the case where
the appropriate curve, i.e., a curve of the type shown in Figs. 123
to 136, is missing for the metal in question or the given conditions
of rolling, and only data are available concerning the effect of velocity
on the resistance to deformation without the effect of the reduction
heing taken into account, i.e., curves of the type shown in Figs. 121
and 122,

In this case a correction, accounting for the effect of the mean
reduction on the resistance to lincar deformation, is introduced
into the product nn, found from (he curves mentioned above.
[t should be noted that, as follows from the relevant experimental
data, the effect of the reduction on the yield stress is comparatively
small. In particular, V. Valorinta, comparing the resistance Lo
deformation of certain steels (stainless steel X18H9, valve steel
3X14H14B2M and carbon steel 35) at different strain rates (from
0.01 to 0.1 sec?), arrived at the conclusion that a variation in the
reduction from 0.25 to 0.9 influences the deviation of the mecan
value of the resistance to deformation by not more than 10% when
e == 0.35 (Fig. 137).

An analysis of the curves obtained by P. Cook (see Figs. 123
to 135) and A. Dinnik confirms that for the majority of steels the
reduction affects the yield stress most when it varies from (.15
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1o 0.2%. In particular, according to the data of A. Dinnik, when
the reduction varies from 0.2 to 0.5% the yield stress of the steels
investigated by him increases from 4 to 9%, whilst for a variation
of the reduction from 5 to 20% the yield stress increases from 13
to 32%. Hence we may conclude that if data are available concerning
the effect of velocity on the resistance to deformation for a given re-
duction, then it will not lead to large errors il these data are used
for another reduction with a small correction for the diffcrence. For

§ 5 [T
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Fig. 137. Variation ol the resistance to deformation of stecls of

the grades X18H9 (7), 3X14H14B2M (2) and 35 (3) with velocity

at various temperatures and reductions; the reductions are shown
at the bottom right

reductions exceeding 20 to 309% this correction must he expressed
by a coefficient exceeding unity ( = 1.05 to 1.1), whilst for reduc-
tions less than 20 to 30% a coefficient approximaltely equal to 0.7
to 0.85 should be wused. If the data concerning the effect of
velocity on the yield stress are obtained by tensile tests (see Figs. 121
and 122) then, as was mentioned above, the calculated value of o,
for steel must be increased by 10%.

The third method may be recommended for approximate delermi-
nation of g, only. It must sometimes be resorted to when the metal
pressure on the rolls has to be calculated for the rolling of a metal
for which there are no test results available concerning the effect of
velocity on the resistance to deformation.

In this case both the coefficients in equation (I11.40) must
be determined separately. The coefficient n; is found from the equa-
tion

(05): = ns0,
where (o;); is the yield stiress of the metal in question, determined

from the curves (see Figs. 91 to 102) or from the
results of other tests.
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The coefficient n, is determined approximately, following the
test results on the effect of velocity on the resistance to deformation
of a metal which is closest to the given metal in its properties, but
for which test results are available, i.e.,

(GS)U.
(0s)o

wlere (o), is the yield stress at the given velocity, temperature
and reduction
(0s)o is the yield stress in statlic tests at the given tempera-
ture.

P

9. BASIC SPECIFIC PRESSURE

The calculation of the forces acting on the rolls may not be based
on the quantity o,, found by testing the metals under conditions
of tension or compression, but directly on the quantity % which
is obtained by measuring the contact normal stresses during rolling.

This method of determining the quantity & was suggested by
A. Tselikov and was worked out by V. Pushkarev.

The distinctive feature of this method is that for the initial
characteristic ol the (rue resistance to deformation of the metal it
uses, instead of the yield stress or o,, the mean specific "pressure p,
during the rolling of standard test pieces under standard conditions.

The conditions of two-dimensional strain are taken as the stand-
ard conditions; they exclude the cffect of spreading, wheveby the
effect of the longitudinal stresses on the resistance to deformation
is, as far as possible, reduced to a minimum. These conditions are
to a considerable extent fulfilled by the rolling of test pieces of
rectangular cross section, when

b, ~ BI/rA_/L and I, =~ V' rAh

Owing to the fact that the ratio of the length of the arc of contact
to the mean depth ol the cross section of the test piece is unity,
the effect of external friction and outer zones is reduced to a mini-
mum, and accordingly we may assume that p, &~ 2k.

Tests for determining p, for different metals and temperatures
have been carried out on a duo mill with rolls with a diameter of
174 mm. To comply with the above rolling conditions, test pieces
with the dimensions ho = 12 mm and by = 50 mm were rolled

with the reduction == 0.1 to 0.13 or loge ~ 0.1 to 0.14
(Ah = 1.46 mm). The stram rate is u,, = 5.8 to b 4 sec7l,
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The results of the investigation into the basic specific pressure
for different steels and temperatures, carried out by V. Pushkareyv,
are given in Table 7.

Table 7

Basic Specific Pressure in Rolling Steel of Various Grades
at Different Temperatures

Basic specific pressure, kg/mme, at temperatures, °C

Grade

ufsteel oy | 200 | 400 ’ 500 leoo 700 | 800 | 900 |1,ooo 1,100[1.200
30 80.9 64.4 70.8 78.6 59 390.7 27.7 23.1 18.2 11.2 8.8

30XI'CA 66.4 55.1 61.2 68.5 47 33.9 22.2 19.6 15.5 13.5 9.6
45 108.6 84.7 89.4 96.8 73.7 48.8 35.9 27.2 18 11.4 8.3
50 142.3 112 107 104.5 76.6 50 32.3 23.9 18 11.5 8.2
65T 157.5 126.7 112.4 107.9 86.0 60.6 35.6 22.4 19.0 12.5 8.3
VY — — 145.8 128.0 98.5 67.4 33.3 24.5 17.5 10.9 8.3

In determining the quantity &£ by this method the accuracy ol
the calculation is increased due to the fact that the yield stress
does not always correctly characterize the true resistance to defor-
mation. In addition, in this case it may be more accurate to take
into account also the strain rate, since without doubt it is not equal
for compression or tension and for rolling. Subsequently, when the
method of the basic specific pressure is supplemented by experi-
mental data concerning the effect of strain rate and reduction, this
method becomes the most exact one.

If data are only available concerning the basic specific pressure
for any single strain rate, the following method may be recommended
for the determination of the quantity 4.

For cold rolling, in analogy with equation (111.39),

__Po ., TsotTs1 -
k== 5 X——zos,g (I111.47)
where p, is the basic specific pressure (for i—hw 0.12)
0
0s and gy are the yield stresses before and after rolling
Osiz i the yield stress (for 20— 0.12).
0
For hot rolling
. Po ., Oux ‘
k= 5 % Cots (I11.48)

where 0,5 is the yield stress at the given strain rate and the given
reduction X
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Og12 is the yield stress when the rate and amount of the
strain are the same as during rolling when the pres-
sure is p,.

The values of these yield stresses are found from the curves shown
in Figs. 123 to 136.

In the case where data are available only on the effect of velocity
on the resistance to deformation without the effect of the reduction
being taken into account (see Figs. 121 and 122), the following
equation may be recommended for the determination of %:

k:%xz—zmz (111.49)

where o, and o, are the yield stresses at the given strain rate
and at the same amount of strain as
during rolling when the pressure is pg
Ny is a correction factor for the given reduction
in relation to %ﬁ: 0.12, at which py, was
0
determined.

The value of this coefficient can be found approximately, by deter-
mining the same coefficient for a metal which, in composition and
properties, is closest to the given one, and for which the curves
shown in Figs. 123 (o 136 are available.



IV

Direction of the Forces

Acting on the Rolls

During Rolling

1. DIRECTION OF THE FORCES
DURING A SIMPLE ROLLING PROCESS

We shall first consider the most common case of rolling; no forces,
with the exception of the forces applied by the rolls, act on the
metal being rolled; the motion of the metal at the entry and exit
is uniform; both rolls are driven and the rolling process is com-
pletely symmetrical with respect to both rolls, i.c., the rolls have
the same peripheral velocities and diameters; and the metal is
homogencous as regards mechanical properties. This case is called
the simple rolling process.

It follows from the laws given above concerning the distribution
of the specilic friction forces and pressure over the arc of contact
that the elementary forces, applied by the roll to the metal being
rolled, can be represented by three resultant forces: a force NV acting
normally to the roll surface, and two friction forces 7'y and T, direct-
ed tangentially in the opposing directions, one from the zone of
backward slip, and the other from the zone of forward slip (Fig. 138).

Since the rolling process is symmetrical relative to both rolls,
the interaction of the rolled metal with the other roll can be ex-
pressed in the form of three similar forces.

15—662
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In accordance with the assumption, only the forces from the rolls
arc applied to the metal being rolled and its motion at entry and
exit is uniform. That portion of the metal which is located in the
geometrical zone of deformation, however, has an acceleration,
vy —1Up

Al
during which the metal is located in the geometrical zone of defor-
mation. But the inertial forces caused by this phenomenon are very
small in comparison with the metal pressure on the rolls and may

the mean of which amounts to j= , where At is the time

Fig. 138. Resultants of the elementary forces exerted by the roll
on the rolled metal

be neglected. Then obviously the six forces mentioned above,
acling on the metal from the top and hottom rolls, must be balanced
out, i.e., their vector sum must be zero. This is possible only under
the condition that the overall resultant P, of the three forces applied
by one roll (Fig. 139) is equal and opposite to the force P,, the
overall resultant of the other three forces applied by the other
roll. Since, in accordance with the symmetry conditions, the point A,
where the overall resultant force P, of one system of three forces
is applied, must be located at the same distance as the point B
from the plane passing through the axes of the rolls, I3 being the
point where the resultant force P, of the other three, mirror image
forces is applied; thus AC = BD.

Hence we may conclude that the resultant of the roll pressure
on the metal, including the friction forces, must be directed paral-
lel to the line connecting the centres of the two rolls, i.e., il must
be vertical, as shown in Fig. 139.

Taking into consideration that the metal being rolled exerts
on the rolls the same pressure as the rolls do on the metal, we arrive
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at the conclusion that the resultant P of the overall pressure of the
rolled metal on the rolls, i.e., the normal pressure and the friction
forces, is also directed parallel to the line connecting the centres
0; and O, of the rolls (Fig. 140). '

Let us find the torque necessary to rotate the roll, without taking
into account the friction loss in its bearings. This torque is equal

Fig. 139. Direction of overall resultant Fig. 140. Direction of the re-
forces cxerted by theroll on the rolled sultant forces applied to the
metal in a simple rolling process rolls in a simple rolling process

to the product of the force P by its lever arm aboul Lhe axis of
the roll, i.e.,

M,= Pa (Iv.1)
or

D .
M1:P751nﬁ (IV.2)

where D is the diameter of the rolls, and
B is the angle characterizing the point ol application of the
resultant of the metal pressure on the rolls.
The torque required for the rotation of both the rolls obviously
is equal to 2M 4, i.e.,
M =2Pa (IV.3)
15*%
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or

M =PDsinp (IV.4)

L.et us determine the direction of
the reactions of the bearings of the roll
and the torque nccessary to rotate
them, taking into consideration the
inevitable friction losses in the journals.

From the condition of equilibrium of
the roll it is obvious that the reaction
of its Dbearings is directed parallel
to the resultant of the pressure of the
metal on the rolls, and will produce
a torque about the axis of the roll
which equals the torque of the friction
forces in the bearings. In the case of
a simple rolling process and when the
journals or the necks of the roll are
located on both sides of the roll barrel
these conditions will be satisfied only
Fig. 141. Direction of the re- when the reaction of the bearings of
sultant forces acting on the cach roll equals the resultant of the
rolls in a —simple rolling pressure of the metal on the roll, i.e.,
process when the effect ol the - . ) .
friction in the bearings is the Torce P, and is directed vertically

included along the tangent to the friction circle,
as represented in Fig. 141.

The couple of the forces P, with the lever arm of a - p, which
acts on the rolls will he balanced by the torque required to rotate
the roll and equal to

M, = P (a-tp)

where p is the radius of the friction circle.
The torque required to rotate both the rolls when the friction
losses in the hearings are taken into account is

M -=2P (a1 p) (IV.5)

or

M. P(Dsinf-i-du) (IV.6)

where d is the diameter of the journal or the neck of the roll, and
p is the coefficient of friction in the journals.

In practice, however, the set of conditions corresponding to the

case of a simple rolling process is not always satisfied (see above),

so that the resultant of the pressure of the metal on the rolls is not
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directed vertically. Thus, for example, the following variants are
possible:

(1) in addition to the forces applied by the rolls, there are still
other forces (tensioning of the metal by the preceding or following
stand in continuous mills, or by the reeler inmills for cold rolling)
acting on the rolled metal;

(2) the motion of the metal being volled is non-uniform (reversible
mills, considering the period when (he metal is gripped by the
rolls);

(3) in the rolling process the symmetry conditions between the
top and bottom rolls are not satisfied; in particular, only a single
roll is driven (thin strip two-high mills);

(4) the rolls rotate with different peripheral velocities (rolling
carried out in section mills with top or bottom pressure);

(5) different roll diamecters (mills of the Lauth type);

(6) the metal being rolled is inhomogeneous in its mechanical
properties (rolling of bimetal or unevenly heated meial);

(7) different coefficients of friction of the two rolls;

(8) different width of the upper and lower portions of the rolled
strip.

In all the cases enumerated above and in similar cases the re-
sultant of the pressure of the metal on the rolls is not vertical so that
the bearings of the rolls are subjected to lateral forces. When the
rolling process. becomes unsymmetrical with respect to both rolls,
the torques necessary to rotate each roll are unequal as well.

Below we shall consider the most characteristic of these cases
of rolling, when the resultant of the pressures of the metal on the
rolls deviates from the vertical.

2. DIRECTION OF THE FORCES WHEN
EXTERNAL LONGITUDINAL FORCES ARE APPLIED
TO THE ROLLED METAL

We assume that the metal is rolled under the same conditions
as for a simple rolling process, but additional forces R, and R,
are applied to the rolled strip at entry to the rolls and at exit; the
forces act along the axis of the strip. The forces can be either tensile
(Fig. 142) or compressive. In practice such cases of rolling are often
observed.

Rolling with tension is extensively used in continuous mills
(particularly when strips are cold rolled and when tubes are reduced),
and also in mills provided with coiling and tensioning drums.
Rolling with the application of thrust or rolling with pressure head
is encountered when the metal is forced into the rolls or when it
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meets an additional resistance in passing through the rolls or when
it emerges from the rolls; for example, the mandrel in automatic
tube rolling mills, turning and guiding devices, etc.

We shall assume that the forces R, and R, have positive signs
when they are tensile forces.

Let us suppos: that R, <C Ry. In order to determine the direction
of the resultant of the pressures the metal exerts on the rolls, just
as in Lthe preceding cases, we shall first consider the conditions of

(a) (b)

Fig. 142. Direction of the forces acting on the rolls during rolling
with tension:
(a) Rg < Ry; (0) Rg > Ry

equilibrium of the metal being rolled. For equilibrium it is obviously
necessary that the sum of the horizontal projections of the pressure
resultants on the rolls and on the metal being rolled be equal to

NX=R,—R,

Since the rolling process is symmetrical with respect to the lop
and botltom rolls, i.e., the deformation of the metal effected by the
top and bottom rolls is the same, the horizontal projections of the
resultants of the roll pressure on the metal being rolled must be the
same. Then

x =it (IV.7)
where X is the horizontal projection of the force P, i.c., the re-
sultant of the roll pressurc on the metal bheing rolled.

It follows from this that in rolling where external longitudinal
forces are applied to the metal the resultant P of the metal pressure
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on the rolls is vertical only if Ry, == R,. In the majority of cases
Ry = R, so that the force X is not zero and the resultant of the
pressure ol the metal on the rolls is inclined towards the direction
of rolling, when R, << R, (Fig. 142a), or it is inclined away from
the direction of rolling, if Ry > R, (Fig. 142b).

We denote the angle belween the vertical line and the direction
of the force P by 0; then the torque required to drive both the rolls is

M =2Pa=PDsin (p F 0) (IV.8)

where D is the diameler of the rolls.

The angle 6 in this equation can be determined from the condition
(IvV.7), i.e.,
for the case Ry<< Ry

. Ri'—lfo
sin0:= 5P (IV.9)
and for the case Ry > R;:
sin—Fo—T4 (1V.10)
2pP ’

It follows from (1V.8) that when R, << R, (Fig. 142) the torque
necessary Lo drvive the rolls diminishes as the angle 0 increases,
but when this angle increases as far as 0 = B, then M -= 0. The
force P in this case passes through the centre of the roll, and the
entire rolling process takes place as a result of the front tension
(or, more precisely, because R; > R;). In practice this type of
rolling process is used in wire drawing benches, when the dic is
made up of free-running rolls.

If at the same time the effect of the friction forces of the rolls in
the bearings is taken into consideration, then the resultants of
the pressures on the rolls, when the latter are free-running, must
pass along the tangent to the friction circles, as shown in Fig. 143.

In this case the angle 0 of the inclination of the force P to the
vertical can be found from the triangle A BO:

0-=p-0,
where 0, is the angle beltween the force P and the radius OA.
This angle can be determined from the equation
sin 6, :—Z&_: —EI)¥}L (rv.11)

where p is the radius of the friction circle of the bearings of the roll

D is the roll diameter

d is the diameter of the journal

u is the coefficient of friction in the bearings.

The forces necessary for pulling the metal through the frec-running
rolls or so-called roll dies, dependent on the overall pressure on
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them, can be found from the equation
R —Ry=2Psin (p-+0)) (IV.12)

The resulls obtained above concerning the direction of the forces
are applicable not only for rolling between two rolls as shown in
Iig. 142 but are also wvalid for rolling and wire drawing in stands
with three or four rolls (Fig. 144). In this case the overall pressure
of the metal on all rolls must be substituted for 2P in equations

(IV.8), (IV.9), (IV.10) and (IV.12).

AT\._I
IrHL | m)
SEE/BES
[ ]
i
\V‘!\f
(a) (b)

Fig. 144. Three- and four-roll working arrangements
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3. DIRECTION OF THE FORCES WHEN THE METAL BEING ROLLED
MOVES NON-UNIFORMLY

Let us suppose that the rolls rotate non-uniformly, with the
result that the rolled strip emerges from the rolls with a certain
acceleration, which we denote by ;7. In other respects we assume
that all the conditions of thie simple process of rolling are satisfied
(sece above).

We denote the weight of the strip by G.

According to d’Alembert’s theorem the rolled strip can be con-
sidered as being at rest if the corresponding inertial force U is added
to the system of forces acting on it.

The overall lIength of the rolled strip, after it emerges from the
rolls, is denoted by I, whilst the elongation which it receives during
its passage is denoted by A. Let us assume that at the instant in
question the strip has emerged from the rolls to a distance z
(Fig. 145). Then the weight of the portion of the strip located at this
instant on the other side of the rolls equals

G
1 (li ‘I)
1

The acceleration of this rear portion of the strip is /T Then the

inertial force U of the entire strip, located in the front and back
of the rolls, can be found from the equation
G A .
U:g—ll[(li—x)T»r x/] (IV.13)
where g is the acceleration of free fall.

To determine the direction of the resultants of the metal pressure
on the rolls, as in the preceding cases, we consider first the condi-
tions of equilibrium of the strip being rolled. For equilibrium it is
obviously necessary that the sum of the horizontal projections of
the resultants of the roll pressure on the rolled strip be equal to

2X =U (IV.14)

where X is the horizontal projection of the force P, the resultant
of the roll pressure on the strip.

Since the force P has a horizontal projection, the resultant of the
pressure of the metal on the rolls departs from the vertical. Tor
a positive acceleration it will be inclined away from the direction
of motion of the strip (Fig. 145a), whilst for a negative acceleration,
i.c., for a deceleration, it will be inclined towards the direction of
motion of the strip (IFig. 1450).

In practice the angle of inclination of the resultant of the metal
pressure on the rolls is usually not large, since the tangential ac-
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celeration of the volls even in reversing mills does not exceed H
to 8 m/s% and as a rvesull of this the inertial forces arising are insig-
nificant in comparison with the pressure of the metal on the rolis,
Ol this we can convince ourselves from the following example.
FExample. Determine the maximum side pressure of the melal
on the rolls and their bearings for a blooming mill when a billet

(a) (6)

Fig. 115, Direction of the [orces acting on the rolls during non-uniform motion
of the rolled metal:
(a) accelerating motion; (b) deceleraling motion

weighing 10 tons is rolled. At the end of the pass the rolls rotale
with a deceleration of 120 revolutions per minute per second. The
working diameter of the rolls is 1,450 mm.

The maximum side pressure will be observed at the end of the
pass. Neglecting the forward slip we assume that the deceleration
of the strip emerging from the rolls is

. 115w =
= - ‘),\ “2
j ) 120=7.25 m/s

Using equations (IV.13) and (IV.14) we determine the side pres-

sure on one roll:

X =

110,000 o~ o -
5 X938 7.25 ~ 3,700 kg

For blooming mills 1150 the overall pressure on the rolls reaches
1,200 to 2,000 tons. Thus the effect of a non-uniform velocity of
motion of the rolled metal on the direction of the force resultants
is insignificant.
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4. FORCES ACTING ON THE METAL AT THE ENTRY TO THE ROLLS,
AND THE CONDITION FOR GRIPPING

The inertial forces arising during a non-uniform motion of the
rolled slrip can in certain cases attain a considerable magnitude
(when the strip is gripped by the rolls).

We shall consider the case of a strip being gripped when it is fed
to the rolls with a velocily considerably less than the velocity
of gripping.

We denote the feed velocity of the strip by g, and the entry ve-
locity of the strip into the rolls during steady state motion by v.
Wlhen vy << v the entire mass of the strip being rolled receives a con-
siderable acceleration during the period of gripping, and its veloc-
ity is thereby increased from vy to v. In praclice for the majority
of rolling mills the feed velocity vy is usually less than the velocity v,
and consequently at the instant when the strip is gripped by the
rolls inertial forces arise. The velocities vy and v are found to be
equal in continuous mills (with the exception of the first stand),
with the result that inertial forces are absent during the gripping
period.

Let us attempt to calculate the possible value of the inertial
forces arising at the instant when the strip is gripped by the rolls.
We denote the acceleration with which the strip is gripped during
the time interval in question by ;.

Then the gripping is counteracted by the inertial force

G .
U.,;
g]

Two normal forces NV and two langential friction forces T (Fig. 146)
are applied to the metal from the side of the rolls. The forces
acting on the metal being rolled from the side of the guides, rolls
of the roller table, etc., will be neglected in view of Lheir small-
ness. Then the sum of the projections of the forces NV and T on the
direction of motion must be equal to the force

U - 2T cosa— 2V sin« (IV.15)

We express the tangential force T in terms of the torque M,
applied by the motor to both rolls to rotate them during the grip-
ping period (the friction forces in the bearings of the rolls are neg-
lected):

. Mg
] = D

We denote the coefficient of friction between the roll and the
strip being rolled by w. Then equation (IV.15) assumes the follow-
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ing form:

2M gy cosa tana )
U:——U—<1— ) (IV.16)

u
Lt follows from this equation that for the same Mg, the inertial
force increases as the angle of contact diminishes. The maximum
value of Lhis force is limited by the ratio
My,
Umax < T
5
In practice the greatest value of the force U is observed during
unexpected interruptions in the rolling process, which are sometimes

Fig. 146. Forces exerted on the rolled metal when rolls first take
hold

seen to occur when the rolls, as a result of a random, but sharp drop
in the coefficient of friction, begin to slip on the rolled strip and
then instantaneously grip it anew. A phenomenon of this kind is
observed, in rare cases, during the first passes in slab mills and
in the roughing stands in strip mills. When rolling takes place
with high angles of contact, then, as metal with a softer skin gets
between the rolls, a short-timed slipping of the rolls on the metal
can take place, after which the metal is again gripped by the rolls.
The magnitude of the inertial {forces arising at this instant is con-
siderable, and as a result a breakdown can occur.
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The conditions for the gripping of the metal being rolled by the
rolls, when an external force R acls in the direction of the motion
and promotes increased gripping, can be expressed by the following
equation:

U

T cos a—N sina+ 25— 0 (IV.17)
Taking into account that
T < Np
we obtain the condition for gripping
- R—U
p.} tan a_m (IV.I].S)

1f we neglect the effect of the force U when the force R is absent, then
p>tana (Iv.19)

i.e., in this case the angle of contact must not exceed the angle
of friction.

For a steady state rolling process the maximum possible angle
of contact may also be determined from the equation of equilibrium.
We project all the forces on the metal being rolled on:the direction
of its motion. In so doing we neglect the effect of spreading. Then
(Fig. 147):

(¢
DN = — S Dax Sin ayr day -1- \ Ty cos aur da, —
0

Ri— Ry

-0 (IV.20)

T e

— \ T cosayrday-i-
0

where p, is the specific pressure
T, is the specific friction force
r is the radius of the roll
b is the width of the rolled strip.

If for the sake of simplification we assume that the value of the
specific pressure is constant over the arc of contact and equal to p,,,
and the friction force v, = up,,, then the equation of equilibrium
and, consequently, the condition of gripping is

_H%Hma—zsmyju%f_:o (IV.21)
Let us analyze equation (1V.21) for the case where Ry = R, = 0.

For this we find the derivative d (S(;:: ) and equate it to zero:

d(siny) cosa sina -0
da 2 2u
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It follows from this equation that the maximum value of the
angle y is observed in the case where o == p. With a subsequent
increase of the angle a the angle y diminishes, and, consequently,
the friction forces diminish over the zone of forward slip, i.e., the

Neu tful SectL'qn

—

Fig. 147. Forces acting on the rolled metal during steady state
motion

friction forces in the zone of forward slip, being a kind ol reserve
friction force, are exhausted when the angle y diminishes, and the

rolling process becomes less stable.
Finally, when v = 0 the angle of contact reaches the theorctical

maximum and if this value of y is substlituted into cquation (1V.21),
then for Ry == R, we obtain

1 —cos amax

mn = SIN Qg
ar
1 : a : . a . a
— 28in? 20X .. 2 gip M (g5 NAX
w 2 9 _2
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From this

max

tan (I‘T:'H

From the above we arrive at the gencrally known result that
when p, == const., T, == up == const. and Ry -= R; =0

Amax & Z(P

In praclice, however, the maximum possible angle of conlact
in the steady state motion is alwa)s less than the doubled angle
of friction during gripping. This is explained, in the first place,
by the fact that rolling with forward slip or with y == 0 is pracli-
cally impossible; in the second place, the coefﬁcmnt of friction
during a sleady state motion is less than during gripping, and, in
the third place, the specific friction forces over the arc of contact,
as mentioned above, are distributed non-uniformly and close to the
neutral section their value is less than pp,. In view of these circum-
stances the maximum angle of contact is less than 2¢ during a steady
state molion.

5. DIRECTION OF THE FORCES WHEN ROLLING
WITH ONE DRIVEN ROLL

This case is observed when only one roll is driven by the motor
(the bottom one, for example), whilst the other rotates only as
a result of the friction arising between the metal being rolled and
the surface of this free-running roll. Such a method of driving the
rolls is often used for thin strip two-high mills.

Let us suppose that the other conditions correspond to Lhe case
of a simple rolling process (see above). The action of the rolled
metal on the top roll, expressed in the form of the elementary forces
applied to the arc of contact, can be represented by a single result-
ant force P applied, say, at the point A (Fig. 148). 1f we neglect
the friction forces in the bearings, then this resultant of the pres-
sure of the metal on the top roll must pass through ils axis, since,
in accordance with the condition of uniform rotation of the roll,
equilibrium is possible only when the sum of the moments of all
the forces acting on the roll about its axis is zero.

Since action is equal to reaction, the resultant of the pressure
ol the top roll on the metal is 0bv10usly P, = P, and is directed
normally to the voll surface as shown in TFig. 148b.

Let us determine the direction of the resultant P, of the pressure
ol the bottom roll on the metal heing rolled. Since in accordance
with the condition assumed only the forces from the rolls acl on the
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metal being rolled and ils motion is uniform, then obviously the
force P, must halance the force Py. This is possible only if P, = P,
and the force P, is directed to the opposite side, being in the same
straight line as the force P, (Fig. 148b).

The resultant P of the pressure of the rolled metal on the bottom
voll is equal to the force P, and is directed to the opposite side,

(a (0

Iig. 148. Direction of the forces acting on the rolls (a) and on the rolled
metal (0) when only the bottom roll is driven

being also in the same straight line with the force P, (Fig. 148a).

Thus we may conclude that if only one roll is driven and the
other rotates only as the result of the friction arising between the
rolled metal and the rolls, then resultants of the pressure of the
metal on the rolls ave equal to each other and depart from the ver-
tical. On the free-running roll the pressure resultant is directed
radially Lo the roll, whilst on the driven roll this resultant is direct-
ed along the line drawn through the centre of the free-running
roll and the point of application of the resultant of the pressure
ol the metal on the rolls.

The torque necessary to rotate the bottom, i.e., the driven roll,
is equal to the product of the force P by its lever arm a,, i.c.,

M= Pa, (IV.22
In view of the fact that
02:(D+h1) Sin Bl
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where f; is the angle characterizing the point of application of the
resultant of the pressure of the metal on the free-
running roll, ‘

M, can also be expressed as:

My= P (D + hy)sinf, (IV.23)

Comparing this equation with equation (IV.2) we see that the
torque which in the case of one driven roll must be applied to this roll
to rotate it is roughly twice the torque which must be applied to
cach roll when both the rolls are driven. This is fully understandable
since in one case the total torque necessary for rolling is applied
to one roll, whilst in the other case it is applied to two.

When the friction forces in the journals of the roll are taken into
account, the direction of the resultants of the metal pressure on the
rolls is altered somewhat. We denote (Fig. 149) the diameter of
roll journal by d, and the coefficient of friction of the journal in the
bearing by p. The torque of the friction forces on the top roll can
then be expressed by the equation

d
Mfr:Pl‘*j

Since the top roll is free-running, it follows from the condition
of equilibrium that this torque must balance the torque produced
by the resultant of the pressure of the rolled metal on the top roll.
Therefore, when the friction forces in the journals of the rolls are
taken into account, the resultant of the pressure of the rolled metal
on the top roll passes not through the centre of the latter, but is
directed along the tangent to the friction circle as shown in
Fig. 149, i.e.,

d

where p is the radius of the friction circle.

As for the resultant of the pressure of the rolled metal on the bot-
tom roll, it lies, as in the case considered above, on the same
straight line as the force P which is applied to the top roll (Fig. 149).

The torque which must be applied to the bottom roll to rotate
both the rolls is

d
M,—P <a2 T 7) (IV.24)
The lever arm a, can be found from the equation
a,=B0O,—p

where BO, is a perpendicular dropped from the centre of the hot-
tom roll to the line passing through the centre
of the top roll parallel to the force P.

166062



Fig. 149. Direction of the forces acting on the rolls, taking
accounf. of friction in the bearings, when only the hottom roll
is driven
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If the angle of inclination of the [orce P to the line connecting the
centres of the rolls is denoted by 0, the length of the line segment.
B02 is

BO,= (D ! h)sinB

From the triangle ACO; it follows that 0 = [ | ¢. The angle [
is determined by the point A at which the resultant ol the pressure
on the top roll is applied, whilst the angle @, i.c., the angle
between the radius drawn from the centre of the top roll to the
point A and the direction of the force P, can bhe found from the
equation

Sing = L n (IV.25)

Then the lever arm a, can be determined from (he equation
ay= (D--hy)ysin (B! ¢)—p
Substituting this value of a, inlo equation (IV.24) and noting
that p = p % we find the torque required to rotate the bottom roll

when the friction forces in the journals of both rolls are taken into
account:,

My= P (D- I)sin (- q) (IV.26)

where the angle ¢ is determined from equation (I'V.25).

By a similar method we can find the direction of the forces for
other arrangements of rolling with a free-running roll. In particu-
lar, a problem of this type was solved by A. Zvyaginisev in connec-
tion with a rolling mill for wheels.

6. DIRECTION OF THE FORCES FOR DIFFERENT
PERIPHERAL VELGCITIES OF THE ROLLS

We shall consider rolling with so-called top or bottom pressure.
This case is often encountered in rolling structural sections. In
this case the peripheral velocities and the diameters of the rolls
are different; otherwise we assume that all the conditions of the
simple rolling process are satisfied.

Let us assume that in the given case the diameter D, of the top
roll is a little larger than the diameter D, of the hottom roll
(Fig. 150). For equal angular velocities of the two rolls their pe-
ripheral velocities are not the same. As a result of the difference in the
peripheral velocities the emergent end of the volled metal (if the

16*
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difference in diameters is not very large) does not tend to go in the
horizontal direction, but will tend to curve towards the roll with
the lower peripheral velocily, i.e., in the present casc towards the
bottom roll. In order to prevent Lhis motion of the strip, guides are
installed at the exit side ol the boltom roll.

—_—

R T2
K

\

Fig. 150. Forces acting on the Fig. 151. Forces acting on the rolls
rolled metal when the peripheral ve- during rvolling with top pressure
locity of the top roll exceeds the
peripheral velocity of the bottom

roll

By means of the guides the strip is straightened out at the exit
from the rolls; in connection with this the action of the guides on
the strip can approximately be expressed in the form of a bending
moment

My = oW (IV.27)

where o, is the yield stress of the rolled metal, and
W is the section modulus of the rolled strip for plastic
bending.
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To determine the direction of the forces acting in this case on the
rolls, let us first consider the conditions of equilibrium of the rolled
strip. A ‘

We denote the resultant of the pressure of the top roll on the
metal by P4, and the resultant of the pressure of the bottom roll
by P,. In view ol the fact that besides the forces only the bending
moment M, acts on the rolled strip, both forces P, and P, must
obviously be equal to each other and be directed in such a way
that they form a couple cequal to M, (Fig. 150):

Pie= M, (IV.28)

where e is the lever arm of the forces P; and P,.

It follows from this ecquation that the larger M, the longer must
be the lever arm e. This lever arm can be increased by increasing
the distances from the plane passing through the axes of the rolls
to the points A4 and B where the forces P, and P, are applied, and
also depends on the inclination of these forces to the horizontal.

Since the magnitudes of AC and BE are very close to each other,
owing to the relative smallness in the diameters of the rolls and
the angle of contact is nearly the same for both rolls, the forces P,
and P, are not vertical (I'ig. 151). Thus, when rolling is carried
out by top or bottom pressure, lateral forces arise acting on the
rolls and their bearings. Owing to the fact that the forces P, and
P, are equal and parallel, the lateral forces acting on the bearings
of the top or bottom voll are the same, but are directed to opposite
sides. The roll with the smaller diameter exerts side pressure on the
bearings in the direction of motion of the rolled metal, whilst
the roll with the larger diameter exerts it in the opposite
direction.

If the angle of inclination of the forces P, and P, to the vertical
is denoted by 6, then the value of the side pressure on the bearings is

X == P;sin0 (IV.29)
Here the angle O can be found from the equation
. e <
SIIIQZW (IV.SO)

where hg is the depth of the cross section of the rolled strip in the
section AB.

Substituting this value of sin 0 into equation (IV.29) and express-
ing P,e, in accordance with equation (IV.28), in terms of M,, we
obtain v

X=22 (IV.31)
B

Let us determine the torques necessary to drive the rolls. Drop-

ping perpendiculars from the centres O; and O, of the rolls on to the
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direction of the forces Py and P, and denoting their lengths by «,
and a,, we find the lorques

M, P,a, (1V.32)
and
jl[z ,[)2(12 (IV.33)

We denote the angles AOC and BO.FE, specilying the points
of application ol the forces Py and P,, by p; and B,.

Then the angle between the force 7y and the radius 044 equals
By -+ 0, and the angle between the force P, and the radius O,B
is fy — 6. The lever arms a; and a, in this case can be expressed as:

ay - St sin (B 1-6)

Dy .
a, 5 sin (Bo—0)

where D, and D, are the diameters of Lop and bottom rolls.
Substituting these values of a; and a, into equations (IV.32)
and (IV.33) we obhtain

M Piglsin (B 0) (IV.34)
and

, Dy o

My P, 5 sin (B~ 0) (IV.39)

Since in practice D =~ D, and correspondingly [y =~ B, it fol-
lows from these equations that M, > M.

Thus, the torque is distribuled unequally between the two rolls
when applying top or bottom pressure. For the roll which rotates
with the greater peripheral velocity a larger torque is required
than for the other voll. From Fig. 151 it is also seen that Pia; >
= Pzaz.

When the difference in the peripheral velocities of the rolls is
considerably increased, it can happen that the angle 0 equals the
angle B,; then the force P, passes through the bottom roll and
M, == 0. In this case the torque necessary for rolling must be applied
only to the other roll which moves with the higher velocity. I,
however, 6 > f,, then the force P, will pass above the poinl O,
and in this case the bottom roll will act as a brake.

For the top and botlom pressures used in practice the Lorque
applied to the roll having the lower peripheral velocity is usually
not equated to zero; it is, as a rule, less than the torque necessary
to drive the other roll.
~To determine tentatively the difference in Lhe Lorques applied
to the top and bollom rolls, assuming for simplicily that the angles
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Bi = B>~ P and the diameters D; ~ D, ~ D, we can use the
following equations:
M,—M,=PD sin0cosp (IV.36)

or
v s g~
M, — M._.=’h_;ncosfs (IV.37)

The effect of Lhe difference in the peripheral velocilies on the
distribution of the torques necessary Lo drive the (wo rolls has been
experimentally investigaled by a number of scientists. These inves-
tigalions confirm the conclusions drawn above that if one of the
rolls rotates with a higher peripheral velocily, then the torque
applied to this roll must be grealer than the torque applied to the
second roll, At Lhe same lime it was noted that even acompara-
tively small difference in the peripheral velocities of Lhe rolls causes
a considerable inequality of the torques of the rolls (Fig. 152). Also
il was discovercd that the side walls of the section rolls greatly
alfect the distribulion of the torques hetween Lhe two rolls. The
appearance of friction [orces on the side surfaces of the section roll
had an effect similar to Lhe increase of the peripheral velocity of
the roll.

When rolling with closed section rolls the main part of the torque
necessary to drive both rolls is often taken up by the roll with the
groove. Because of this phenomenon we often observe a very greal
non-uniformity in the distribution of the Lorques between the two
rolls of actual mills intended for rolled section material, and some-
times Lhe ralio approaches 1:5 or even 1:10.

It follows from the above that the inequalily of the peripheral
velocities of the two rolls is undesirable as regards the work of
the drive mechanism of the rolling mill (shafls and gear stand),
since it leads to a considerable increase in the load on one of
the shafts, usually constituting the weakest link in a rolling
mill. For example, in slabbing mills and in four-high mills, when
the roll barrel is of considerable length (more than 2,000 mm), the
permissible reduclions and, consequently, the productivily in the
majorily of cases are limited by the strenglh of the joinl between
the shaft and the roll, the size of which is limited by the minimum
centre distance belween the rolls. In addition, the inequality of the
peripheral roll velocities can lead to a considerable increase of the
load on the gear stand when the thickness of (he rolled strip is small.

Unequal peripheral velocities of the rolls are in a number of cases
inadmissible also for the process of rolling. Thus, for example,
in hot rolling thin strips and wire the top roll is oflen made free-
running in order to achieve almost absolutely equal peripheral
velocities of both rolls; the top roll is driven as a result of the fric-
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tion of the metal on the roll. It must always be taken into considera-
tion that, owing to the difference in the peripheral velocilies of the
two rolls, the end of the emergent rolled strip does not tend to move
in the horizontal direclion, but will bend towards the roll with the
lower peripheral velocily. Therefore, different peripheral veloci-
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Fig. 152. Effect of the difference in the peripheral velocities of

the two rolls on the torque ratio for top and (bottom rolls and on

the form of the bent blank when it emerges from the rolls (G. Ken-
nedy and F. Slamar)

ties are permissible only in those cases where this bending of Lhe
strip emerging from the rolls is allowable or is required by the roll-
ing process itself.

This effect of unequal roll velocities on the exit characteristics of
the rolled strip is in practice widely utilized in slabbing and section
mills. In particular, in blooming mills the diameter of the bottom
roll is usually 10 mm larger than the diameter of the top roll, whilst
in section mills, conversely, the diameter of the top roll often is
taken larger than the diameter of the bottom roll.
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Unequal peripheral velocities of the rolls are somelimes also
utilized in cold rolling of a thin strip or sheets. In this case Lhis
inequalitly is not chosen from the consideralions of the flexure of the
strip al the exit, but is used only to reduce the pressure on the rolls
and to reduce their local compressive deformaltion (flattening) over
the contact surfaces. In this conneclion it is of interest to menlion
the rolling process under Lhe condilions where [he difference in the

2k-0y

[ S

2k+0pg

Fig. 153. Distribution of the specific pressure on the bottom roll
when its peripheral velocity vr, exceeds the velocity vy of the rolled

metal as it emerges from the rolls

peripheral velocilies of the rolls is so great that the peripheral
velocity of one of the rolls, Ur,, exceeds the exit velocily vy of Lhe

metal. During rolling under such condilions the rolled metal slips
along the roll having the higher velocity, the slip taking place over
the entire arc of contact in the same direction. Consequently, there
is no zone of forward slip on the contact surface of this roll, and
the zone of backward slip extends over the entire arc of conlacl.
The character of the specific pressure diagram in this case musl be
completely different in comparison with the usual rolling process.
There is no increase in the specific pressure in the middle of the arc
of contact as a resull of the exlernal friction, and the specific pres-
sure diagram must have a form close to a trapezium (Fig. 153; see
also Fig. 73). In view of the fact that the rolled metal tends to
acquire the higher velocily al the point A, (in comparison with the
point A,) at the entry, and at the point B, (in comparison with
the point B,) at the exit, we can assume that in the region of the
point A, tensile stresses 0, arise, whilst in the region of the point B,
compressive stresses o, arise. Consequently, even if the effect of work



250 DIRECTION OF THE FORCES ACTING

hardening is not (aken into account, the specific pressure diagram
will be trapezoidal. But independently of this phenomenon the
mean specific pressure on the roll with the higher velocity, for
v,, > vy, must be less than when rolling with equal peripheral
velocities.

It follows from the foregoing thal the problem concerning the
effect of unequal peripheral velocities on the forces in the rolling
mill must be considered together wilh the resulting deformalion
of the metal. In particular, it is necessary to take into account the
inevitable flexure of the rolled strip at the entry and exit of the
rolls owing to their unequal peripheral velocities. As a result of
this flexure the contacl surfaces on the rolls will be unsymmelrical,

P

P

Fig. 154. Displacement ol the contact surfaces arising from unc-
qual peripheral velocities of the rolls, also showing the direction
of the resultant forces

and the planes of entry and exit will not be parallel to the plane
passing through the axes of the rolls.

The approximale diagram presenled in Fig. 154 which gives
the layoul of the contacl surfaces on both rolls indicales that the
point of application of the resultant of the pressure on the roll
which has the lower peripheral velocity must be closer to Lhe line
connecling the roll centres than the corresponding point on the
roll which is characterized by the higher peripheral velocily. As
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a consequence the resultant of the pressure of the metal on the roll
with the higher periplheral velocity will be inclined o me2i the
direction of motion of the rolled metal.

7. DIRECTION OF THE FORCES WHEN ROLLING
WITH DIFFERENT COEFFICIENTS OF FRICTION ON THE TWO ROLLS

In certain cases rolling can lake place with differenl coefficients
of friction on the two rolls. In practice this is observed in both
hot and cold rolling; in the firsl case because of a possible

\ /

1\,7/

oy |

FFig. 155, Displacement of the contact surfaces due to the difler

ence in the coelficients of friction of the two rolls, also showing the

direction of the resultant forces (coclficient of friction of top roll
exceeds that of the bottom one)

difference in the skin al the lop and boltom surfaces of the rolled
strip, and in Lhe second case because of different lubrication
conditions.

In measuring the torque on both the shafts of blooming mills
I5. Rokotyan established that in certain cases, in spite of the some-
what larger diameler of the botltom roll, and, consequently, its
higher peripheral velocity, and also in spile of the uniform temper-
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ature of the rolled strip, the lorque on the top roll can be consid-
erably higher than that on the bottom roll.

The investigalions into this phenomenon carried out by 1i. Roko-
tyan showed a considerable influence of the unequal coefficients
of friction (because of the diflerent stale of the skin on the two
rolls) on the distribution of the torque. For the roll characterized
by the higher cocfficient of friction on the contact surface a larger
Lorque is necessary than for the other roll. N. Kirilin came to simi-
lar conclusions whilst experimentally investigating the torque
distribution for cold rolling with different lubricalion conditions
on the top and boltom surfaces of the rolled strip. This phenomenon
is explained by the facl that when the coelficienl of friction increases
the zone of forward slip increases, and, consequently, the particles
of metal located close to the roll with the higher coefficient of fric-
tion tend to emerge from the rolls with a higher velocity than the
particles touching the other roll. The unequal coeflicients of friction
on each roll have roughly the same effect on the character of the
metal emerging from the rolls as do unequal peripheral velocities.
The contact surfaces on both rolls will not be symmetric and Lhe
resultant forces of pressurc on the rolls deviale from the vertical
(Fig. 155).

The problem concerning the direction of the forces during rolling
for different coecfficients of friction has not yel been worked out
theoretically, and therefore it is not possible to recommend any
analytical rclation for (he dependence of the inclination of (he
forces P on the difference in the coeflicients of friction.

8. DIRECTION OF THE FORCES WHEN THE ROLLS HAVE
DIFFERENT DIAMETERS

We shall consider the case where Lhe peripheral velocity of both
rolls is the same, but the diameter of one roll is considerably larger
than the diameter of the other roll. Otherwise the same condilions
apply as for the case of a simple rolling process.

In practice this case is encountered in strip mills of the Lauth
type and in combhined mills for cold rolling thin strip (mills of
type ¥). The ratio of the roll diameters sometimes reaches 2:1
and more. '

Owing to the fact that the rolled metal is homogeneous as regards
its mechanical properties and its pressure on bolh rolls is the same,
we may assume thal for the same width of the strip (Fig. 156),
over its entire thickness, the arcs CF and DG are equal to each other.
We assume further that the distribution of the specific pressure for
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the strip being rolled is the same over the arc CF as il is over the
arc DG. In this case the point A, where the resultant of the pressure
of the rolled strip on the Lop roll is applied, must be located at the
same distance from the point £ as the point B from the point G, B

Fig. 156. Forces acting on rolls of dillerent diameters

being the point of applicalion of the resultant of tlie pressure exerted
on the bottom roll; thus,

AF =BG

We drop perpendiculars (Fig. 157) from the points 4 and B on
to the plane passing through the axes of bolh rolls. Since p; > B,
it is obvious that

Al < BK

the point A is located closer to the plane passing through the roll
axes than the point B.

Since it is given that only Lhe forces applied by the rolls act on the
strip, it is clear that the two resultants of the pressure cxerted by
the top and bottom rolls on the metal must balance cach other,
that is, their vector sum will be zero. This is possible only if these
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lorces are equal and have opposite direclions. The resultants of the
pressure excrled by the metal on the rolls (see Fig. 156) are ex-
pressed in the form of two forces (P; and P»,) which are equal and op-
posite. Thus, the resultants of the pressures exerted by the metal] on
the rolls lie in the same straight line. This straight line must obvious-
ly pass through points A and B and will be slightly inclined towards

Fig. 157. Determination of the direction of the forces acting on
rolls of different diameters

the plane passing through the axes of bolh rolls (see Fig. 156).
We shall denote this angle of inclinalion by 0.

As is seen from Fig. 156, the lever arms of the two forces are differ-
ent, and accordingly the torques necessary to rolale the rolls are
also unequal:

M, - Py <<M,=P-a, (1V.38)
where
Dy . 3C
atszm(ﬁ,—H) (IV.39)
and
Dy . (
a5 = —52-sin (B2 - 9) (IV.40)

The angle 6 can be found approximately from the triangle ABC
(see Fig. 157), where the segment AC is parallel to the plane passing
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through the axes of the rolls:
BC
la“ 0 S 7(,—

or

Dy sinfy— 1)y sin fi

- a1~
8= tan 2hy - Dy (1= cos o) -+ Dy (1-—cos By)

(IV.41)

9. DIRECTION OF THE FORCES WHEN ROLLING NON-UNIFORMLY
HEATED METAL AND BI-METALLIC STRIPS

We shall consider the influence exerted by the non-uniformity of
the mechanical properties of the rolled metal on the direction of the
forces acting on the rolls during rolling. We assume that a strip
the top layer of which is heated to a higher temperature than the
bottom layer is rolled, the other conditions being the same as in
the case of a simple rolling process. Consequently, the resistances
of the top and boltom layers of the sirip are different, and obvious-
Iy the angle of contact for the top roll
is greater than thal for the bollom roll.

We denote (Fig. 158) the mean specific a
pressure cxerted by the sirip on the \ \
top roll by py. and that exerted on the

bottom roll by p.. We correspondingly fa’ 16
denote the angle of contact on the top
and bottom rolls byo; and a,. We assume (ap
that the width of the rolled strip is con- ’
stant over its depth, and denote it by b. Byi=
In accordance with the condition that Ao !
the pressures exerted by the rolled me- S 8 <
tal on Lhe top and bollom volls are
equal, we can wrile the following | 8 =
equalion: p )
D . Do . i
pib 5= sinwy pob - sina,
2 2 ‘ 0,
ot ) . o ‘ g{a'
NN L.
P2 ay '\_
We assume that (he specific pressure
distribution over the arc of contact is

the same for the top and bottom rolls. Fig. 158. Forces acting on
Denoting the angles between the plane 011 during the rolling of
passing through the axes of rolls and the non-uniformly heated metal



256 DIRECTION OF THE FORCES ACTING

radii drawn to the points A and B, where the resultants of the pres-
sure exerted by the rolled strip on the top and boltom rolls are
applied, by B4 and B, (see Fig. 158) respectively, we obtain

P B

P2 By
from which it follows that B, > B..

We assume that no olher forces besides Lhose applied by the rolls
act on the rolled metal. Then the two resultants of Lhe pressure
exerted by the rolls on the metal, which we denote by P, and P,
must balance, i.e., their vector sum musl be zero.

It is not difficult to see that, as in the preceding case, these two
forces balance only if P; = P, and they have opposite directions.
The resultants of the pressure exerted by the rolled metal are ex-
pressed in the form of the same forces with the reversed directions. The
straight line with which the direction of the forces P, and P, coincide
must obviously pass through the poiuts A4 and B (see Fig. 158).

Since this straight line is inclined to the plane passing through
the axes of the rolls (as in the preceding case), forces arise acling
on the rolls in the horizontal direction, and the lever arms of the
two forces P, and P, are unequal.

To rolate the roll in contact with the more heated portion of the
strip a somewhal greater torque is necded than to rotate the other
roll:

M= Piay > My= Pya, (IV.42)

The lever arms a, and a, can be determined in terms ol the angles
B, and P..

We denote the angle of inclination of the forces P; and P, to the
vertical by 0 (see Fig. 158). The angle between the dircction of the
force P, and the radius AQ, is then equal to §; -+ 0, and the angle
between the direction of the force P, and the radius BO, is B, — 6,
from which

@ sin (B, 0)
and
ay = 2-sin (By —0)
When the possible flexure of the strip as it emerges from the

rolls is neglected the angle 0 can be determined from the triangle
ABC. where the segment BC is parallel to the line 0,0,:

AC
taﬂ U=7’,6—,
sin iy —sin p
0 == tal’l“‘l Z/ll ik ( ! = [ 2 (IV'43)

7 4 2—cus Py—cos Py
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The same method can obviously be used also for delermining
the direction of the forces which act on the rolls when bi-metallic
strips or strips with different widths of the top and bottom portions
are rolled, i.e., in the case where the lateral dimensions of the sur-

faces of the strip in contact with the top and bottom rolls are differ-
ent.

10. DIRECTION OF THE FORCES ACTING ON TIIE ROLLS
OF RING ROLLING MILLS

We shall consider the most common case when the outer and
inner surfaces of a ring or tyre are worked by the two rolls 7 and 2,
the axes of which are parallel with the axis of the ring (Fig. 159).
For this the inner roll 7 is usually made free-running, whilst the
outer roll 2 is driven.

Since the inner roll is free-running, the resultant P of the pres-
sure exerted by the metal on it must be directed along the tangent
to the friction circle of the journals of the roll (Fig. 159). As for the
resultant of the pressure on the outer roll, it is in line with the force
P acting on the inner roll.

The torque which must be applied to the outer roll to rotate both
rolls is

where a, is the lever arm of the force P relative to the centre of
the outer roil
p2 is the radius of the friction circle of the journal of the
outer roll.
From Fig. 159 it follows that

ay= A0, —py

where p, is the radius of the friction circle of the journal of the
inner roll
AO, is the perpendicular dropped from the centre of the outer
roll on to the line passing through the centre of the
inner roll parallel to the forces P.
If the angle of inclination of the forces P to the line connecting
the roll centres is denoted by 0, the length of the segment AO,
can be determined from the equation

AOZ = ("1 + I's —:‘ hi) Sin G

where 7, and r, are the radii of the inner and outer rolls. The
angle 0 can be found by the same method as in the case concerning
the direction of the forces when rolling with one free-running

17—0662
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roll (see Fig. 149):

0=P:+ o,
where
sin (plz?_—i (IN.40)

Then the lever arm is
ay = (ry i-ro-+ly)sin (B - @) —py

We substitute this value of a, into equation (IV.44); then the
torque which must be applied to the outer roll to rotate hoth rolls.

Fig. 159. Direction of the forces acting on the rolls of a ring
rolling mill:
1-—non-driven roll; 2—driven roll

when the friction forces in the journals are taken into account, can
be expressed by the equation

M =P [(ry-+ry4hy) sin (B -+ ¢;) — p; - po] (IV.46)

where B, is the angle between the line connecting the roll centres and
the radius drawn from the point of application of the
resultant of the pressure exerted by the metal on the
free-running roll.
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If the rolls in the mill are arranged as cantilevers then the fric-
tion forces in the bearings, which are correspondingly increased.
are represented by the appropriate values of the radii of the friction
circles:

__ Apa-t+ Bog
or=—7
and
Coc-- Epp
Po=—"p5—
where A and B arc the loads on the bearings of the inner roll

C and E are the loads on the bearings of the outer roll

0., Pu, 0c¢ and py are the radii of the friction circles of the
bearings.

Let us consider the case when the ouler roll has the form of a ring

(die) and the rolling takes place between its inner surface and the

[ ?\ \\

r £l

) —

Fig. 160. Direction of the forces acting on the rolls during the
rolling of a ring between the inner roll / and the roll 2, made in
the form of a die

roll located in it (Fig. 160). The direction of the forces acting on
the rolls will be the same as for the setup just considered, and the
resultants of the pressures exerted by the metal on the rolls must
lie on the same straight line. If the inner roll is free-running as well,

17*



260 DIRECTION OF THE FORCES ACTING

then obviously this straight line will touch the {riction circle of its
bearings as shown in Fig. 160. The torque necessary to rotate the
driven roll can be determined from equation (IV.44) or (IV.46).

11. DIRECTION OF THE TORCES ACTING ON THE ROLLS
OF FOUR-HIGH MILLS

When metal is rolled on four-high mills two fundamentally
different cases are possible as regards the direction of the forces
acting on the rolls: the first occurs when the mill is driven by the
motor via the working rolls, and the second when it is driven via

(@)

Fig. 161. Direction and point of application of the resultant of
the pressure exerted by the working roll on the support roll:

(a) without the rolling friction between the rolls taken into account;
(b) with the rolling friction taken into account

the support rolls. In the first case the support rolls are free-running
and rotate as a result of the friction forces arising on the conlact
surfaces between the working and support rolls, and in the second
case, conversely, from the drive the motion is transferred to the
shafts of the support rolls, whilst the working rolls are free-running.

Let us consider the direction of the forces acting on the rolls
in both these cases.

In the first case it is necessary to begin with the determination
of the conditions of equilibrium of the support rolls. Since these
rolls are driven the resultant of the pressure exerted by the working
roll on the support roll, P, must be directed along the tangent
to the friction circle of its bearings (Fig. 161a), in order to balance
the reaction of the bearings, also directed along the tangent to this
circle. If the rolling friction is neglected we can assume that the
point of application of the force Pg,p lies on the line connecting the
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roll centres as shown in Fig. 161a. But when
rolling friction is taken into account the
point of application of the force Py, is
displaced from the line of the centres by the
length of the lever arm m of the rolling
friction (Fig. 161b). This displacement of
the point of application of the force Py,
takes place as a result of rotation of the
rolls during which the contact surface is
located asymmetrically relative to the line
connecting the centres of the two rolls,
being a little displaced towards the motion
of the metal. Theoretically this problem
has been investigated by N. Glagolev.

The directions and the points of applica-
tion of the forces acting on the support
rolls do not depend on the direction of the
forces applied to the working roll, and, con-
sequently, on the ratio between the back
and front tensions in the rolled metal.

To rotate the support rolls it is necessary

to apply to the working roll the torque Fig. 162. Forces acting on
(Fig. 162), the bearings of the sup-
M. -p IV.47 port roll, with the force

sup 7 PsupC (IV.47) acting on the working

or roll over the contact sur-
face between the support

My = Pouy (5= sinatm ) (1V.48) rolls

2

where ¢ is thelever arm of the force Py, relative to the working
roll
D, is the diameter of the working roll
m is the lever arm of the rolling friction
o is the angle between the force Py,;, and the line connect-
ing the roll centres.
At the same time the angle o can be determined from the expres-
sion
Dsup =M

e (IV.49)

sina=—2
where Dy, is the diameter of the support roll
Osup is the radius of the friction circle of the support roll.
Substituting the value of sin o into equation (IV.48) we obtain
the final formula for M,,:

Maup = Poup [ Dl::vp Psup + M < 1 4- ziif,, )] (IV.50)
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In this equation the first term corresponds to the friction losses
in the bearings of the support roll, whilst the second term corre-
sponds to the friction losses due to the rolling of the working roll
on the support roll.

Fig. 163. Forces acting on the Fig. 164. Forces acting on the
working roll during rolling working roll during rolling with
without tension or when Ry= R, tension (the direction of the force

P,o; is shown by the continuous
line for Ry < R,. and by the dash
line for Ry > R,)

The horizontal component of the pressure on the bearings of the
support roll is found from the expression

Xsup= PSiIl ((1 j: 0) (l\v.51)

where 6 is the angle between the vertical plane and the line con-
necting the centres of the support and working rolls.

The plus sign in this expression corresponds to the displacement
of the working rolls from the line connecting the centres of the sup-
port rolls in the direction of rolling, as shown in Fig. 162, whilsl
the minus sign signifies the displacement in the opposite direction.
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From equation (IV.51) il is already possible to draw the funda-
mental conclusion about the greater stability of the position of the
support roll in relation to the working roll when the angle 0 has
the positive sign, i.e., when the working rolls are displaced in the
direction of rolling.

L.et us now consider the conditions of equilibrium of the working
roll.

The torque necessary to rotate the working roll is a sum of three
lorques (Figs. 163 and 164):

Mu) == Mrol'% Msul)“;'ju'fr (1\752)

where M,,; is the rolling torque, equal to the product of the resull-
ant of the pressure exerted by the metal on the
roll, P.,, by its lever arm a
M,,, is the torque used to rotate the supporl roll, defined
by equation (IV.50)
M, is the torque of the friction forces in the bearings of
the working roll.

[n equation (IV.52) the only unknown quantity is M, which
is equal to the product of the resultant of the pressure on the bearings
of the working roll, T, by the radius of the {riction circle of the
journals of the working roll, p,.

Thus the following form can he given lo equation (IV.52):

D

K _ ! X A i DLU \— 1 ‘
My Prya - psuntm!,s,w m<1+ i )J - Tpw (IV.53)

Since the working roll is carried by the support roll and its bear-
ings have vertical guides, the resultant of the pressure on the bear-
ings of the working roll, 7, must be directed horizontally.

Projecting the two remaining forces P,,, and Py, acling on the
working roll on to this direction we obtain:

(a) for rolling without tension when (he resultant of the pressure
exerled by the rolled metal on the rolls is directed vertically (sce
Fig. 163)

T'=X = Pgpsina (IV.54%)

(b) when the front tension R, exceeds the back tension R, (see
Fig. 164)
T = Pyypsina-i- Py siny, (IV.55)
(¢) when R, > R,
T =Psypsina — Py sin vy, (IV.50)

where yy and y, are the angles between the force P,,; and the
line connecting the centres of the working rolls.
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The value of the pressure on
the support roll, Py,,, appearing
in equations (IV.54), (IV.55) and
(IV.56) can be found by project-
ing the forces on the working
roll on to the vertical direction:

when R, == R,
~ 1 s
psup:])rolm (I\’.JI)

when Ry, << R,
Psup = Prol#ﬁ_je) (1\58)

at

3= when R, > R,

Psu]):” rol COSYZ) (I\”x—)ﬂ)

cos (a 0

The interaction of the forces
between the working and support
rolls of four-high mills just con-
sidered, when the friction circles
and the rolling friction are taken

Fig. 165. Direction of forces acting
on the rolls of a four-high mill when
the support rolls are driven and the

into account, gives a clear and
simple idea about the true forces
acting on the rolls.

In the second case, when the
support rolls are the driven ones,
the analysis of the direction of the forces should be commenced with
determining the conditions of equilibrium of the working roll. Since
this roll is free-running, the reaction of the support roll must be
directed towards it so that the sum of the moments of the forces
acting on the working roll is equal to zero.

Assuming that the rolling process is symmetrical with respect
to both working rolls and that external longitudinal forces act on the
metal being rolled (see Fig. 142), and, consequently, that the rolling
torque can be expressed by equation (IV.48) we obtain (Fig. 165):

P 2% sin (B £ 0) - Xpy == Pouy ( % sin a—m> (IV.60)

working rolls are free-running

where P is the overall pressure exerted by the metal on the work-
ing roll
X is the pressure on the bearings of the working roll
Ow 1is the radius of the friction circle of the bearings of the
working rolil
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a is the angle between the direction of the force Py, and
the line connecting the.centres of the working and
support rolls.

In accordance with the equilibrium condition of the working
roll, all of the three forces P, Ps,, and X acting on it intersect at
a single point as shown in Fig. 165. At the same time the force X
runs tangentially to the friction circle and is directed horizontally,
because the bearings of the working rolls are arranged usually so
that they move in vertical guides, and, consequently, can take up
only forces directed horizontally. It follows that the force X will be
equal to the horizontal projection of the forces P and Py,,:

X=Psing - Pypsina
Substituting this value of the force X into equation (IV.60) we

find the angle of inclination of the force Pyup to the line connecting
the roll centres:

)L L—D—w— sin (f == 0) 4 py ] -m
. Isup 2 -,
sina (IV.61)
Dy,
—5—bw

Having determined the angle o we find the torque necessary to ro-
tate the support roll:

ﬂlsup = Psup (asup %’ psup) (IV62)
or
Dsup . -
Moy =Py (52 sina-m - psu,,> (IV.63)

If we neglect the friction forces in the bearings of the working
roll and the rolling friction of the working roll on the support roll,
then after substituting the value of sin « from equation (IV.61)
we obtain

un) x -
S—sin (B £ 6) (IV.64)

A'Wsup =P

i.e., the torque defined by equation (IV.8) increases proportionally
with the diameter of the driven roll.

The problem concerning the torques necessary to rotate the support
rolls of four-high mills has also heen considered by A. Filatov and
A. Tretyakov.
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12. DIRECTION OF THE FORCES ACTING ON THE ROLLS
OF MULTI-ROLL MILLS

The method considered above can also be used to determine
the direction and magnitude ol the forces acting on the rolls of
multi-roll mills with the number of support rolls more than two.

As an example let us determine these forces for a 12-roll mill
(Fig. 166) in which the working rolls / are free-running, whilst
the intermediate support rolls 2 and & are driven.

FFig. 166. Forces acting on the principal support rolls of a 12-roll mill

We denote the points of contact of the rolls by the letters . B,
C, D, E and F, and the forces at the points of contact of the rolls
])y PA, Pn, Pc, P[), PE and PF respectively.

We shall first find the direction of the forces acting on the prin-
cipal support rolls 4, 5 and 6. The angle between the force P and
the line connecting the centres of the support rolls 2 and 4 can be
determined from the expression

. P Mo
sinae =2 D

f

(IV.63)

where D, is the diameter of the support roll ¢

p is the radius of the friction circle of the journals of the
support roll

ms is the lever arm of the rolling friction arising between
the principal support rolls and the intermediate rolls.
Similarly we can find the direction of the forces P, P and P
acting on the support rolls 5 and 6, where in calculating the angles
for roll 9 we must substitute into equation (IV.65) the quantilies
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0 cos fp and p cos Py, corresponding to the actual forces P;, and P,
relative to the centre of the roll 4, instead of the radius p of the
friction circle (Fig. 166). The direction of the forces acting on the

~
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Fig. 167. Forces acting on the working roll of a 12-roll mill

working roll is determined from the condition thal moments of the
forces applied to it by the rolled metal and the support rolls are
equal (Fig. 167):

Prya— Py <-]i—’- sin (1‘,\——m1> - Ppg ( ]él sin a,,—m,) (1V.66)

where m, is the lever arm of the rolling friction arising belween
the working and support rolls.
If we assume that o, =~ o, then

. o Proja i (Pa -Pgimy 2 T
sina, - PPy, <o (IV.67)

The torque required to rotate the intermediale support roll 2 is de-
termined from the expression (Fig. 168):

~

. . "Dy .
My--P, /%51na_4+ m1> - P¢ (\Tz sinae !-ms )

L Py /—ﬁ sinay, - mz‘\} (1V.G8)
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Assuming for the sake of simplicity that
Q¢ =0p=0p=0f
D,= Dy= Dy

p = pcosPp x pcosPe

and substituting the values of sin a¢ and sin o, from equations
(IV.65) and (IV.67), we obtain the formula for the calculation ol

Fig. 168. Forces acting on the intermediate (driven) support rolls of
a 12-roll mill

the torque which must be applied to both the driven rolls of a 12-roll
mill:

Mo Pra 524 (PatPr) (132 e (Pe P & Py Py)
1

« [%j_p (s g_f) my | (IV.69)

The first term of this equation represents half the rolling torque
referred to the driven support rolls, the second term is the torque
expended on the rolling friction of the working roll along the driven
support rolls, and the third term is the torque required to overcome
the friction in the bearings of the principal support rolls and the
rolling friction between them and the driven support rolls.

Having determined the direction of the forces P.,, Py, P¢, Pp,
Pg and Pp, let us calculate their magnitudes.
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We shall consider the conditions of equilibrium of the working
rvoll. Projecting the forces P, and Pp on to the direction of the
resultant of the pressure P,,; exerted by the rolled metal on the
working roll (Fig. 167), we obtain

Prol = PA CcOoS ((F_,\ — oy +'Y) - PB CcOoS ((PB+ ayq — Y) (I\‘.’T(')

But since the projections of the forces P, and Pz on to the line
perpendicular to the direction of the forces P,,; must be equal to
cach other, then

Posin(¢q—a,=+v)==Ppsin(¢gp-4-as—Y) (IV.11)

Solving equations (1V.70) and (IV.71) for the forces P, and P,
we find

sin (@p--as—v) D)
[).-\ I)rOl sin ((PA K ;‘(PB) (I\ . /.4)
and
; sin (pa—aa--y) -
P Pro =i toa on) (Ve74)

Proceeding from the conditions of equilibrium of the intermediale
support rolls we obtain analogous formulas for the forces Pq, Pp,
P and Py acting on the principal support rolls.

The method just considered can also be used to determine the
direction of the forces in multi-roll mills with other numbers of
rolls, and, specifically, in 20-roll mills. In the latter case it is neces-
sary to bear in mind that usually four out of the six intermediate
support rolls, being in contact with the principal support rolls, are
the driven rolls.

13. DIRECTION OF THE FORCES IN ROLLER MILLS

For cold rolling of thin-walled tubes use has been made in the
recent years of mills of VNIIMETMASH (All-Union Research
Institute for the Construction of Metallurgical Machinery) system,
developed under the leadership of V. Nosal, in which the metal 7
is compressed by the rollers 2 resting on support planes & (Fig. 169).
When the support plane moves in the direction indicated in the
figure the roller touches the metal being worked and, as a result
of the inclination of this plane, is pushed into the metal, thus
compressing it.
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Since the rollers are free-running and the rolling is effected only
as a result of the movement of the support plane in the horizontal
direction, the resultant of the pressure P, which the metal exerts
on the roller must be balanced by the pressure P, which the support

Fig. 169. Direction of the forces acting  Fig. 170. Direction of the forces acling
on the roller of a roller mill, neglecting  on the roller of a roller mill, including

the rolling friction loss: the rolling friction loss of the roller 2
7- rolled melal; 2—roller; 3—support on the support plane 3 (7/—rolled
plane metal)

plane exerts on the roller, as shown in Fig. 169. The angle of incli-
nation 0 of the force P, to the vertical can be found from the condi-
tion that the two segments are equal:

rysin (a;— P --0) == ry sin (ag —6) (IV.74)

where ry and r, are the radii of the roller along the working and
support surfaces respectively
o, and a, are the angles between the vertical and the perpen-
diculars dropped from the centre O of the
roller on to the surface of the rolled metal and
on to the support plane
[ is the angle characterizing the position of the
point A, at which the resultant of the pressure
exerted by the metal on the roller is applied.
Assuming that sin a, ~ a,, etc., in view of the smallness of the
angles in equation (IV.74), we obtain

ro sin as—ry sin(a;—pB) (IV75)

Si]] 6:‘: ;
ri T
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Having delermined the angle 6 we find the force which is necessary
to move the support plane in the horizontal direction:

X =nP,;sin® (1V.76)

where n is the number of rollers.

If the friction losses occurring when roller £ rolls over the support
plane 3 are taken into account the point of application of the force
P, must be displaced by m opposite to the motion (Fig. 170). In this
case the angle of inclination 0, of the force P, to the verlical can
be found from the condition

rysin (a;—B -+ 0) = rysin (uy—0) -+ m (IV.77)
Then the angle 8, can be determined from the equation assuming,
in view of the smallness of the angles, that sina; ~ a4, elc.:

ro Sinag—rysin (a;—B) -+ m (IV.78)

sin 9, = p——
i

The force which is required to move the support plane in the
horizontal direction is found from equation (IV.76), putting 6 -= 0
in accordance with equation (IV.78).
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Pressure Exerted

by the Metal on the Rolls

During Longitudinal Rolling

1. THE FACTORS DETERMINING THE PRESSURE
OF THE METAL ON THE ROLLS

When the magnitude of the resultant of the pressure exerted by the
metal on the rolls is determined attention should be concentrated
on the calculation of the force P which is directed parallel to the
line connecting the roll centres. This force is the main component
of the overall pressure exerted by the metal on the rolls. The other
component of the force, X, which is perpendicular to the main com-
ponent, and which is dependent on the dircction of the resultant
of the force. is found from the equations given in Chapter 1V.

If we neglect the variation of the contact stresses over the width
of the rolled strip and if we take the width as equal to unity, the
force P can be expressed in the general form by the equation (Fig. 171):

13 o v
dz ¢ . .
P= x COS Uy - \ Ta sin oy — \ Ty sin dq
COS Uy . COS Uy ’ . COS Oy
0 Y 0

The second and third terms of this equation may be neglected
in view of their smallness as compared with the first term. The
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pressure of the metal is then
i

P~ g Px dZ
0

In practice this quantity is usually calculated as the product
P=Fpn, (V.1)

wliere F 1s the projection of the contact area between the metal
and the roll; this is also called the contact area on the
plane normal io the direction of the force P.

The symbol p, denotes the mean specific pressure given by the

equation

I
Pm= i S pxdz (V.2)
0

Thus the determination of the pressure which the metal exerts
on the rolis during rolling reduces to the solution of the two basic
problems:

(1) the calculation of the contact area between the metal being
rolled and the rolls, or, more precisely, the projection of this area
on to a plane normal to the direction of the force P;

(2) the determination of the mean specific pressure on the rolls.

The quantity # appearing in this equation can, in the majority of
cases, be found comparatively simply. as it depends on the geo-
metrical dimensions of the rolls and the rolled strip before it enters
the rolls and after it emerges from them.

——

Fig. 171. Forces acting on the roll

{R—0662
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On the other hand, the determination of a quantity required for
the calculation of the overall pressure on the rolls, viz., p,,, may
offer considerable difficulties in a number of cases.

This quantity, as has already been mentioned (see Chapter 111,
Section 1), depends on a large number of different factors, which
are divided into two groups. The first group is made up of those
factors which affect the mechanical properties of the rolled metal,
whilst the second group consists of factors which influence the charac-
ter of the state of stress of the rolled metal, i.e., contact friction
{orces, outer zones, tension and so on.

The effect of the first group of factors was considered in detail
in Chapter 1II and was in its general form expressed by either equa-
tion (111.1) or equation (I11.2). The effect of the second group ol the
factors just mentioned, which determine the specific pressure, can
be expressed in the form of a product of (wo quantities, of which
the first takes into account the mean normal stress g., whilst the
second [actor, ng, takes into account the effect of the rest of the
stresses on the resistance to deformation:

2 .
Pm= VT—_;—Z NgOq (V.3)

The first term on the right-hand side of this equation (sce Chap-
Ler I, Section 14) varies from 1 to 1.15 as it depends on the ratio
given by equation (1.66).

[f the deformation is two-dimensional, that is, when the elfect
of spreading may be mneglected and it may be assumed that
0o = 0‘%03, then

. IR
Vs—ge V3

The second term in equation (V.3), ng, representing a coefficient
of the state of stress, olten exerts more influence on the specific
pressure than the remaining cocfficients. As will be shown, depending
on the conditions of rolling and the external friction, it can vary
between very wide limits (on the average from 0.8 to 8).

This coefficient can in turn be represented in the form of a prod-
uct of three coefficients, in accordance with equation (I1.76):

Ng=nghgNg (V.4)
where ng is the coefficient taking account of the effect of external
friction
ng is the coefficient taking account of the effect of outer
Zones

ng is the coefficient taking into consideration the effect
of tension.
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The first two coefficients ng and ry are usually greater than unity
but the third coefficient ng is less than unity and can reach 0.7 to
0.8 for large tensions.

If we take into account what has just been said and also equation
(I11.2), then the specific pressure on the rolls is

Pm = _2— RNy nNypl60 s (\’ 5)

Vire

or

2 . " »
Pm= m NglgheOy (V())

In many cases the rolling process can be considered as a two-dimen-
sional deformation; then

Pm = ng2k V.7)
where £ is the resistance to pure shear, defined by equation (I11.3).

2. DETERMINATION OIF THE CONTACT AREA
BETWEEN THE MATERIAL BEING ROLLED AND THE ROLLS

In order to calculate the pressure on the rolls from equation
(V.2) it is necessary to know the area of the contact surface between
the rolled metal and the rolls. At the same time it must be remem-
bered that instead of substituting the actual contact arca with the
rolls into equation (V.2), one should use its projection on to the
plane normal to the resultant of the pressure acting on the rolls.
This area will be called the contact areca. Since in the majority
of cases of rolling the resultant of the pressure on the rolls is directed
vertically or deviates but little from this direction, in practical
calculations the quantity F in equation (V.2) is usually taken to be
equal to the horizontal projection of the contact area.

As has been mentioned above, the contact arca depends on the
geometrical dimensions of the rolls and the rolled strip before it
enters the rolls and after it emerges from them. Accordingly, when
the reductions are known it can be delermined without difficulty.

When sheets, bands, and all kinds of strips with rectangular cross
section are rolled, i.e., when the rolls touch the metal being rolled
only with their cylindrical surface, the contact arca (of one roll)
can be calculated from the equation

F=1by, (V.8)

where [ is the width of the zone of deformation, equal to AC
(Fig. 172), and
b,, is the mean width of the rolled strip over the zone of defor-
mation.

18*
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In the majority of cases we
may assume that

bo+b
b =g

where by and b, are the widths

of the

rolled strip

at the entry

to the rolls

and at the
exit from
them.

If the edge of the rolled strip
over the zone of deformation is
approximated not by a straight
line but by an arc of a parab-
ola, then it will obviously be
more accurate to take

2 .
bm = by 4= (by—bo)  (V.9)

| _ ~XT T T T 77 .
T\:\:\\\:\\j When the angle of contact « is
NN known the quantity { can Dbe
o NN \\\i - .
S NN S found from the equation
NN .
i‘:\\\\:\\:\i l=rsina
- - — A\ 3
oo A Let us calculate [ in terms of

. the reduction. From the triangle
\_/@ ABC we find
l=AC =) AB*—BC?* (V.10)

Fig. 172. Area of contact between Where
rolled material and rolls Ah
BC =~

The chord AB is found from the similarity of the triangles ABC
and ABE:

B _ BE
"BC ~ AB

whence
AB=VrAh

Substituting these values of the segments BC and AB into equa-

tion (V.10) we obtain
l:‘/rAh a2 (VA1)
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Since for the angles of contact used in practice the second term
of the radicand is very small in comparison with the first one, the
quantity I can be determined with sufficient accuracy for practical
calculations from the equation

1=V rAh (V.12)

The contact area then is
F=10b,)rAh (V.13)
where b,, is the mean width of the section over the zone of defor-

mation
r is the roll radius
Ah is the linear reduction.

If the diameters of the two rolls differ considerably (rolling mills
of the Lauth type, for example), then the contact area for each roll
is calculated from the equation

2ryr
Febn ]/#_32 AR (V.14)
where r, and r, are the radii of the rolls.

This equation is based on the equality of pressures on the two
rolls, and, consequently, the equality of contact areas of both rolls.
We shall denote the reduction in the depth of the strip, effected by
each roll, by z; and z,. Equating the lengths of the arcs of contacl.
of the rolls in accordance with equation (V.12) we obtain

V2riz =V 2rsz, (V.15)
whence
Zl = Ir? Zg
Since
21+ 20 = Al
then
__Te
2y = P Al

Substituting this value of z; into equation (V.15) we obtain
equation (V.14).

When metal is rolled in section mills where the rolls have non-
cylindrical working surfaces, for example, when a circle, an oval or
a square is rolled into tee-pieces, angles or similar sections, the con-
tact area is determined either graphically or analytically. In the
graphical method the section of the roll together with the rolled part
located on it is drawn in three projections and, plotting the lines
of intersection of the roll and entering strip (Fig. 173), the contact
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area is determined. For a more accurate determination of this area
it is advisable to draw the section of the roll to an enlarged scale.
The contact area can also approximately be determined, when metal
is rolled in non-rectangular section rolls, using equation (V.13)
and taking AZ equal to the mean linear reduction over the width of
section, i.e.,
Qo Oy
Ah = " by (V.106)
where Qy and @ are the cross-sectional areas of the profile before
and after rolling.
In such a calculation the following relations may be recommended
for rhombic, square, oval and circular cross sections:
for a rhombus rolled from a rhombus (Fig. 174a)

Ali=(0.95 to 0.6) (hg— hy)
for an oval rolled from a square (Fig. 174b)
Al ==Tig—0.7hy (for a shallow oval)

and
Al =hy—0.85h; (for a round oval)

for a square rolled from an oval (Fig. 174c)
Al = (0.65 to 0.7) hy— (0.55 to 0.6) I,

for a circle rolled from an oval (Fig. 174d)
Al = 0.85hy —0.79h,
where hy and %, refer to the depth of the cross section of the strip
before and after the pass (see Fig. 174).
To calculate the contact surface in reducing section mills we can

also recommend the formulas proposed by V. Drozd:
for a square rolled from an oval

F =075, V7 (o =T
for an oval rolled from a square
F=20.5% (bo - 0y) Vi (ho — )
for a rhombus or square rolled from a rhombus
F=0.67b, )V 'ry(hy — k)

where ko and 2, are the depth at the middle of the cross section
of the rolled strip before and after the pass
respectively (see Fig. 174)
by and b, are the greatest width of the cross section of the
strip before and after the pass respectively
ry is the roll radius at the middle of the section.



Fig. 173. Graphical determination of the coutact arca

!
Eg <& fr— ’g— -QQ
! < [ ¢
; ¢ | by —
! J b,
i - by (6)
e b,
(a)
!
‘ EE £
= — << < ‘
Z(my AR
} + - b(] ——
by r~— b, —>

| [7, —-
(c)

Fig. 174. Types of reduction effected by rolling:

(a) a thombus; (b) an oval from a square; (¢) a square from an oval; (d) a circle from
an oval
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In addition to these methods of determining the contactl area,
when rolling is carried out with section rolls having non-cylindri-
cal working surfaces, other methods are used. Amongst these the
method of corresponding strip, which has been worked out by
N. Pavlov, is of greatest interest.

3. DETERMINATION OF THE CONTACT AREA
WHEN THE ELASTIC DEFORMATION OF THE ROLLS
AND ROLLED METAL IS TAKEN INTO ACCOUNT

Local elastic deformations of compression arise as a result of the
pressure occurring between the rolled metal and the rolls.

During the cold rolling of steel and also other comparatively hard
metals this elastic deformation, as a result of the high specific
pressure, may be so large that it causes a considerable increase in the
length of the arc of contact. This phenomenon has a particularly
great significance during cold rolling of thin strips and bands with
a small angle of contact.

In this case the formulas given above for the calculation of the
contact area, which have been derived for an ideal, i.e., non-deformed
roll, are no longer valid.

Let us determine the contact surface, taking into account not
only the elastic deformation of the rolls but also that of the rolled
metal.

We denote the local elastic deformation of the rolled metal by A,
and that of the rolls by A,, these quantities being measured along the
line connecting the centres of both rolls (Fig. 175). For the rolled
metal to receive the residual deformation A/ it is necessary that
each roll approach the metal by an amount A; -~ Ay, and then the
contact surface can be expressed by the line 4,B,C.

The horizontal projection of this line can be found from the tri-
angles 4,D0 and B,CO:

L=z +xo= )V 11— (r—B3D)2 = | r*— (r— B B3)*  (V.17)

Removing the parentheses in this equation we neglect the squares
of the quantities B;D and B;B; owing to the fact that they are small
in comparison with r. After the substitutions

ByD =A% 4 A+ Ay and BBy~ A+ A,
we obtain

Loz, a0 1/2r (AT’l + A Agl}, VA, Ay (V.18)
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or
L~V rAh—zi-x, (VA9
where
.’1:2 = V2I‘ (Ai + Az) (V.20)
The magniludes of the local deformation, A; and A,, can be found

using the known results of the theory of elasticity for the compres-
sion of two cylinders. If we neglect the absence of symmetry in the

Fig. 175. Effect of the elastic compression of the rolls and the
rolled metal on the length of the arc of contact

compression of these cylinders relative to the line which connects
the centres, then the deformations A, and A, can be expressed as:

VRS %t QR W W% i L (V.21)

nEy ik,

where ¢ is the pressure per unit length of the compressed cylin-
ders

u; and p. are the Poisson ratios of the metal of the roll and the
rolled strip

E, and E, are the moduli of elasticity of the roll and the rolled
metal.

Expressing the quantity ¢ in terms of the specific pressure p on
the contact surface

q =2zyp

and substituting the values of A, and A, from equations (V.21)
into equation (V.20), we obtain an expression from which the con-
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tact surface can be determined with the elastic deformation of Lhe
rolls and the rolled strip taken into account:

- 1—uy | T—u3y
xg~8p<ﬂh,1 +3 ) (V.22)

When this value of z, is substiluted inlo equation (V.19) the
quanlity [ can be delermined.

If the clastic deformation of the rolled strip is neglected when
ils thickness is small in comparison with the radii of the rolls, i.c.,
if we put E, == oo in this equation, we shall obtain the formula
for the contact surface taking into consideration only the elastic
compression of the rolls, known as the formula of Hitchcock:

2, 30—

5 —— P (V.23)

where p is the Poisson ratio of the material of the rolls
E is the modulus of elasticity
r is the radius of the roll
p is the specific pressure which the metal exerts on the
rolls.
For steel rolls (if we assume that £ - 2.2 > 10' kg/mm?® and
w = 0.3), this equation can be expressed as:

To A

pr 79/
7500 Mm (V.24%)

When the clastic compression of tungsten carbide rolls is deter-
mined il is necessary to take into account the fact that their modulus
of elasticity is approximately three times higher than that of steel
rolls. When £ = 6.64 X 10! kg/mm?,

~ P 5
Ty X 5g = MM (V.25)

Correspondingly the elaslic compression of tungsten carbide rolls
will be less than that of steel rolls.

4. DETERMINATION OF THE CONTACT AREA
DURING RING ROLLING

We shall consider the rolling of a cylindrical ring between cylin-
drical rolls (Fig. 176). We shall assume that the contact area is the
same for both rolls.

We denole the inner and outer radii of the original ring by r;
and r,, and the linear reductions produced by the inner and outer
rolls by Ar, and Ar, respectively. Let us first find the expression
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for the arc of contact of the inner roll. From the triangles ABO and

ABO, (Fig. 176) .
1 =AB =) — (ri —zy)? (V.26)
and
l=AB =V ri—(ri—Ar,—z;)? (V.27)
where
z,== A0 — BO

In the same manner from the triangles CEO and CEO, we find

Fig. 176. Determination of the contact area during ring rolling

the expression for the arc of contact of the outer roll:
1--CE=Vr}—(ro— 2)? (V.28)

and

| =CE V7 (ra— Ary + 29)° (V.29)
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where

° 22=OC—0E

To simplify the solution of these equations we neglect the squares
of the quantities Ary, Ars, z; and z, in view of their smallness in
comparison with the radii of the rolled ring and the rolls. Then

We first eliminate z, and z, from this equation:

—_ 2riry _ '/ 2rory L
a l/,-i_,-, Ary =) A (V.30)

Taking into consideration that Ar, -- Ars = Ah we express Ar,
and Ar, in equation (V.30) in terms of Ak. We obtain then the final

N
) \
7\ N
N I N\
N hos\\\ T4
r[\_ N
N J"%
A\
AN

N\

Fig. 177. Rolling a ring in a die

formula for [ in the case of ring rolling as shown in Fig. 176:

[ — 2Ah N
L+L_L+L (V.31

This formula can also be used to determine the contact surface
when the outer roll is made in the form of a ring (die) touching
the ring being rolled with its inner cylindrical surface (Fig. 177).
This method of rolling is sometimes used in producing races for
roller bearings.
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In this case the sign of the curvature of the outer roll, , in
the formula (V.31) is obviously replaced by the opposite one. Then
for the case of rolling represented in Fig. 177 we can express [ as

follows:
] 2Ah
N (V.32)

ry To ri )

Comparing this formula with formula (V.31) we notice that, for
the same reduclions and the same radii of ring and rolls, the con-
tact area for the rolling setup shown in Fig. 177 will be considerably
larger than for the rolling setup of Fig. 176.

The formulas (V.12) and (V.14) derived above can also be obtained
from equation (V.31) as particular cases. If we assume thal

I'y=—=7T;j= 00

. 2ryre
l= l/rlw - Ah
i.e., we have obtained the formula (V.14).

If, however, we assume that r; = r, then we obtain the
formula (V.12).

in Lhis equation, then

5. THE COEFFICIENT OF FRICTION BETWEEN THE ROLLED METAL
AND THE ROLLS

The friction forces arising between the metal being rolled and
the rolls have a great influence on the rolling process. Not only the
allowed angle of contact and, consequently, the possible reduction
depend on these friction forces, but also, as has been mentioned
above, the forward slip and spreading depend on them.

On the one hand—when the conditions for the gripping of the
rolled metal are considered—the friction forces are positive factors
and the ordinary rolling process is not possible without them; on
the other hand, with increasing friction forces, i.e., ‘increasing
coelficient of friction, the pressure exerted by the metal on the rolls
increases, and together with this the expenditure of energy on rolling
increases. Accordingly whenever the productivity of the mill is
limited by the allowable angle of contact, we try in practice to make
the coefficient of friction between the rolled metal and the rolls
as high as possible. For this purpose, for example, the surface of the
reducing seclion rolls is deliberately made uneven by knurling or
welding on. But in those cases where the reduction is determined
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nol by the angle ol contacl but by the allowable pressure exerted
by the metal on the rolls, as in cold rolling, for example, the surface
of the rolls is polished and is lubricated during rolling.

The coeflicient of [riction between the rolled metal and the rolls
depends not only on the state of the contact surfaces and the con-
tact condilions (the quality of the rolled metal, the rolling temper-
alure, the presence of oxides, the type of lubricant, the specific
pressure, and the velocily of rolling) but also on the natlure of the
slip itself. Accordingly in the rolling process it is necessary to distin-
guish between three kinds of coefficient of friction, which differ mark-
edly from each other under identical conlact conditions and occur,
respectively:

(1) during the gripping process;

(2) when the rolls slip over the entire contact surface;

(3) during the steady state motion when the slipping of the melal
takes place in opposing directions about (he neutral seclion.

The coefficient of friction during the gripping process is found by
experimentally determining the limiling angle of contact, taking

Ugr == tan tpax

The coefficient of {riction at the instant of gripping was sludied
by S. Ekelund for hot rolling of steel (0.15% C). He found the lim-
iting angles of contact whilst rolling test picces with a 10 < 225 mm
cross seclion inlo a ribbed section using a sharp groove and raised
rolls. On the basis of (hese tests S. likelund recommends the fol-
lowing formula for delermining the coefficient of friction as a
function of temperalure (not less than 700°C):

tgr = 1.05—0.0005¢ (V.33)

Table 8

The Cocfficient of Friction During Hot
Rolling of Non-Ferrous Metals at the Instant
of Gripping (After A. Presnyakov)

e G , Coefficie
Metal Tunp(;(r:ﬁtur(’ %[ rf[l;ilé"llilonnf

Copper 900 0.52
Brass

J62 800 0.45

168 800 0.38
German silver

M 81 950 0.4
Nickel 1,100 0.4
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For cast iron rolls with a hardened surface S. Ekelund suggests
the following formula:

fgr = 0.8 (1.05— 0.0005¢) (V.34)

where ¢ is the temperature of (he metal during the rolling process.
The coeflicients of friction at the instant of gripping during hot
rolling of non-ferrous metals are given in Table 8.
According to the investigations of A. Grudev the coefficien(s of
friction during the cold rolling of a low carbon steel (0.08% C) at
the instant of gripping are as follows:

Condition of rolling Coefficient of friction
Dry rolls 0.138 1o 0.147
L.ubricant:

paraffin 0.147 to 0.154

emulsion (10% waler
solution of the com-
mercial emulsifyving
agent D) 0.126 to 0.134

The surface of the rolls is polished; their peripheral velocily is
0.3 m/s.

According to a number of experimental investigalions the coej-
ficient of friction during slipping and steady state motion is lower
than during gripping. This problem has been studied in detail by
A. Grudev. From his test data, for cold rolling of a low carbon
steel, the ratio of the cocfficients of friction during gripping and
slipping is as follows:

Mcan value of the ralio

Condition of rolling gy

ARy

Dry rolls 1.66
Lubricant:

paraffin 2.85

emulsion 2.30

Comparing these results with the data given previously we notice
that Iubricant exerts a considerable effect on the coefficient of fric-
tion when the metal is in contact over the enlire arc, and that it
affects slightly the coefficient of friction during gripping.

The ratio of the coefficients of friction during gripping and slip-
ping in the case of hot rolling of metal was investigated by V. Niko-
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layev. For steel Cr. 3 at a rolling temperature 1,000 to 1,200°C
the above-mentioned ratio obtained by him was

BT 4,25 to 2.0
Wst

A. Presnyakov studied this problem for the hot rolling of non-
ferrous metals.

There are three methods for the determination of the coefficient
of friction during slipping. All these methods are based on control-
ling the conditions under which the transition takes place {rom
the steady state rolling process to the process of slipping.

The first two methods consist in a gradual increase in the draft,
bringing it up to the limiting value, when the rolls begin to slip
along the metal. For this purpose either wedge-shaped test pieces
are used or standard test pieces are rolled with simultaneous ap-
proach of the rolls to each other until slipping occurs. The coefficient
of friction in this case is determined from the equation

Mgy = tan (wamax)

where o, is the maximum angle of contact at which slipping
occurs
| is the ratio of the angle §, giving the position of the
point of application of the resultant of the pressure
exerted by the metal on the rolls, to the angle a .y,
i.e.,

B

Umax

P o=

At the instant of slipping the distribution of the specific pressure
over the arc of contact is nearly uniform (see Chapter I, Section 14)
(Fig. 178) and therefore ¢ =~ 0.5.

The third method of determining the coefficient of friction during
slipping consists in stopping the rolling process as a result of apply-
ing an external force to the rolled metal, opposite to the direction
of its motion. This method of determining the friction forces has
been suggested by I. Pavlov.

In the third method the friction force is calculated from the equa-
tion of equilibrium, projecting all forces acting on the rolled metal
on to the direction of its motion:

Nucosﬁstinﬁ—l—g

where N is the normal component of the pressure exerted by the
metal on the rolls
R is the braking force.
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The third method of delermining the coefficient of friction is
considerably less accurale as compared with the previous melhods,
since owing to the presence of the force R there is a large non-uniform-
ity in the distribution of the specific pressure over the arc of contact
(over the trapezium) and accordingly B == %.

This defecl of the above-mentioned method of determining p,; was
also pointed out by A. Korolev.

Px —

2k

2k -

A

Fig. 178. Distribution of the specific pressure along the arc of
contact when the roll slips on the rolled metal

An investigation into Lhe coefficient of friction by the third method
was carried oul by N. Gel for hot rolling of a steel containing 0.5
to 0.8% C. The values of the coefficient of friction obtained by him
when t > 700°C can be represented by the equation

ter - 0.55 — 0.00024¢ (V.35)

The coefficient of friction during steady state motion is determined
by an indirect method from the magnitude of the forward slip, or it
is determined by measuring directly the tangential forces on the
contact surface.

The first of these methods, i.e., the determination of the co-
efficient of friction in terms of the forward slip, is approximate, since
il has lwo considerable shortcomings:

(1) the law of the distribution of the tangential forces over the
arc of contact is not known in its exact form, and consequently
the existing formulas for the determination of the coefficient of
friction from the forward slip are approximate;

(2) during cold rolling the local elastic compression of the rolls
has a strong influence on the extent of the zone of forward slip. This

19—662
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circumstance also strongly impedes the calculation of the coeffi-
cient of friction as dependent on the forward slip.

In spite of these shortcomings the method of determining the coef-
ficient of friction from the forward slip has been widely used, owing
to its simplicity.

Table 9 presents the data on the coefficient of friction, obtained
by this method for hot rolling of steel.

Table 9
Cocflicients of Friction During Hot Rolling of Steel at Different

Temperatures and Velocities
(After T. Golubev and M. Zaikov)

Coefticients of friction at rolling velocity, m/s

Temperature,
°C

0.2 0.3-0.5 0.5-1.0 1.0-1.5 1.5-2.5
800 0.53-0.66 0.44-0.49 0.34-0.39 0.29-0.33 0.17-0.20
900 0.50-0.57 0.38-0.46 0.32-0.37 0.24-0.32 0.17-0.24
1,000 0.45-0.54 0.37-0.44 0.28-0.34  0.25-0.29 0.17-0.23
1,100 0.41-0.49 0.33-0.38 0.26-0.34 0.26-0.29 0.18-0.23
1,200 0.40-0.43 0.32-0.38 0.30-0.34 0.22-0.27 0.18-0.21

Several methods have been worked oul to measure directly the
contact tangential forces. Four of them are of most interest.

1. A simultaneous measurement of the projections of the specific
pressure and friction forces by two load cells installed in the body
of the roll and inclined in different directions with reference to
the contact surface (Fig. 179). The ratio of the friction force to the
normal force which is determined from the data of the two load cells
can be expressed as:

Tx _ Pysinay—Pysinay
Pr  Pycosa -t Pycosas

where P; and P, are the loads on the load cells.

This method was suggested and used by A. Chekmarev and P. Kli-
menko. Using this method we can measure not only the value of the
ratio of the friction force to the normal force, but we can also estab-
lish its distribution over the arc of contact.

2. As in the preceding case, the normal pressure on the roll and
the friction forces are measured simultaneously, but a special force
measuring roll is used as suggested by D. Piryazev. In this case
a small segment is set in the body of the roll; by means of
this the normal and tangential forces acting on it are measured
as the segment enters the zone of deformation and as it emerges
from it.
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3. A direct and simultaneous measurement of the specific pres-
sure and friction forces by means of a special load cell set in the
body of the roll. This method was suggested and used by O. Muza-
levsky and A. Grishkov. It is undoubtedly the most precise one,
since using it we obtain the direct value of the friction force, and not
only its magnitude and distribution over the arc of contact, but
also the magnitude of the component of the friction force in the
direction of the width of the rolled strip.

Fig. 179. Two load cells 7 and 2 inserted into the body of the roll,
and inclined in different directions with reference to® the contact
surface (as suggested by A. Chekmarev and P. Klimenko)

4. Measurement of the friction forces from the torque on the
roll whilst rolling with the zone of forward slip very close to zero.
This method was proposed by D. Bland and H. Ford. The iprin-
ciple is that rolling is carried out with front and back tensions;
by gradually increasing the back tension we can arrive at a process
where the neutral section reaches the point of exit, with the result
that the friction forces will act on the contact surface in the same
direction. Measuring in this case the torque (M) on the roll and the
resultant (P) of the pressurc acting on the roll, its direction being
normal to the roll surface, we can determine the coefficient of fric-
tion from the equation

where r is the radius of the roll.

This method of measuring friction forces was used by P. Whitton
and H. Ford to investigate the coefficient of friction during cold
rolling of steel and non-ferrous metals with different lubricants.
In carrying out these investigations it was noticed that from the

19*
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instant when the forward slip is terminated and to the appearance of
the negative value of this quantity (from 0to —39%) the ratio M : Pr
is nearly unaltered (Fig. 180), and hence the results of the measure-
ment are nearly constant. The value of the ratio M : Pr in the
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Fig. 180. Variation of the ratio # with forward slip

right-hand side of the diagram falls owing to the reduced difference
between the back and front tensions; here this ratio ceases to be equal
to pg. Tables 10 to 13 give the data on p,, during cold rolling of
low carbon steel, copper, brass and aluminium oblained from the
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Fig. 181. Variation of the coefficient of friction with the
velocity of rolling during the cold rolling ol steel:
I—a mineral oil emulsion; 2—a palm oil emulsion

above-mentioned investigations. The rolling was carried out on a
two-high laboratory mill. The rolls are of steel, polished, with the
diameter 100 mm; the velocity of rolling is 0.15 m/s.

When using tables 10 to 13 we must bear in mind that as the
velocity of rolling increases the coefficient of friction diminishes

(Fig. 181).



Table 10

Cocfticient of Friction During the Rolling of Anncaled
Low Carbon Steel Under Different Conditions

Reduction

T.ubricant !\po(’l.s(;r pcro]?as.\‘. s;)pfl.xFil(?tl?(:]rf
Y
Clean, dry rolls and strip 1 15.0 0.085
Paraffin { 16.5 0.080
Ditto 2 17.0 0.068
Ditto 3 22.0 0.060
Ditto -1 slearic acid 1 16.7 0.075
Ditto-j-10 stearic acid- 0.6% sulphur 1 17.0 0.071
Ditto-!-3% copper slearate 1 16.8 0.063
Ditto-}-59; sodium stearate 3 24.0 0.060
Ditlo--5% lead stearate 2 17.3 0.058
Ditto-}-5% lead oleate 2 17.4 0.058
Ditto ~19; lauric acid 3 24.3 0.053
Ditto -1 lauric acid 2 18.8 0.052
Ditto-: 5% sodium oleate 4 23.0 0.049
Ditto4-19; palmitic acid 3 22.0 0.043
68/615 graphite in oil 1 15.5 0.072
615 graphite in oil 4 24.5 0.047
Vacuum:
RO546 1 15.0 0.070
R0950 1 15.6 0.069
RO40A 1 17.0 0.061
Shell:
PES 3 23.0 0.050
PEG6 4 27.9 0.053
[Esso Baywesl 4 27.5 0.050
Isso Pale 885 3 24.0 0.052
I’sso Paranox 108 2 21.4 0.054
Ditto 3 25.9 0.056
Oil:
olive 2 18.1 0.057
castor { 23.0 0.045
Lanoline 4 26.5 0.041
Camphor 4 27.2 0.038
Table 11

Coefficient of Friction During the Rolling of Pure
Anncaled Copper Under Different Conditions

No.of Reduction Coelficient

Lubricant pass per Dpass, of friction
(]
Clean, dry rolls and strip 1 29.0 0.093
Ditto 3 31.0 0.069
Ditto 4 12.4 0.071

Ditto 4 13.0 0.070



Table 11 (continued)

No.of Reduction Coefficient

Lubricant pass perogass, of friction
(]
Water 1 26.0 0.075
Paraffin 1 23.9 0.067
Ditto 3 31.5 0.068
68/615 graphite in oil 2 32.4 0.061
615 graphite in oil 3 36.8 0.054
Vacuum:
R0950 1 26.9 0.059
RO40A 1 23.7 0.054
RO40A 2 35.0 0.056
RO40A 3 38.7 0.061
Solvac 1 25.2 0.065
Ditto 2 26.0 0.064
Ditto 2 33.0 0.058
Oil:
palm 1 26.85 0.076
ditto 1 26.9 0.075
ditto 1 25.1 0.074
ditto 2 28.4 0.066
olive 2 30.2 0.058
castor 3 34 .1 0.046
Table 12

Coefficient of Friction During the Rolling
of Annealed Brass JI63 Under Different Conditions

. No.of Reduction  gpefticient
Lubricant pass per pass, of friction
/0
Clean, dry rolls and strip 1 15.1 0.093
Paraffin 1 15.0 0.067
Water 1 29.2 0.061
68/615 graphite in oil 3 38.6 0.055
615 graphite in oil 2 27.8 0.049
Vacuum:
R0950 4 22.2 0.052
RO40A 3 22.4 0.059
Solvac 1 33.4 0.052
Ditto 2 28.8 0.049
Ditto 3 33.1 0.046
0il:
olive 1 33.8 0.057
ditto 5 28.0 0.055
Lanoline 6 28.0 0.043
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Table 13

Coefficient of Friction During the Rolling of Annealed
Aluminium Under Different Conditions

. No. of  Reduction (gefficient
Lubricant pass DCI‘J;HSS: of friction
0

Clean, dry rolls and strip 1 22.5 0.092
Ditto 2 22.9 0.101
Ditto 2 37.9 0.101
Ditto 2 22.0 0.100
Ditto 3 22.0 0.099

Paraffin 1 24.5 0.081
Ditto 2 21.3 0.087
Ditto 3 29.0 0.071
Ditto 3 28.3 0.069
Ditto4-1% oleic acid 1 24.8 0.059
Ditto45% calcium stearate 4 30.0 0.08
Ditlo+5% sodium oleale 3 27.9 0.059
Ditto-4-59% lead oleate 3 27.5 0.056
Ditto--5% lead oleate -+

+0.6% sulphur 2 30.0 0.049

615 graphite in oil 1 33.5 0.055

Vacuum R0546 3 30.0 0.082

0Oil:
palm 1 24.0 0.066
ditto 3 33.4 0.066
ditto 3 38.0 0.064
ditto 4 47.7 0.069
castor 3 21.6 0.057

lLanoline 4 25.4 0.025

6. ACCURATE METHOD FOR DETERMINING THE EFFECT

OF EXTERNAL FRICTION ON THE PRESSURE
OF THE METAL ON THE ROLLS

The effect of the friction forces arising on the contact surfaces,
i.e., the external friction, on the specific pressure is taken into ac-

count by the coefficient ng in equation (V.4).

For a two-dimensional deformation, when the effect of the width
of the strip is neglected, this coefficient can be determined from
the mean ordinate of the specific pressure distribution diagram over
the arc of contact, as it depends on the external friction. Thus this
problem must be solved by equation (V.2), substituting into it the
functional relationship p. = f (z) in accordance with the theories
of specific pressure considered above (see Chapter II, Section 8).
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Since the law of distribulion of the specific pressure depends on the
ratio I : hn,, this problem must also be solved separately for differ-
ent cases of rolling. Let us consider it first for the most complex
specific pressure distribution diagram when the ratio [: h, > 5
(see Fig. 53a), there beiug five regions on the arc of contact, charac-
terized by the different laws of the specific pressure distribution.

Fig. 182. Specific pressure p, and contact shear stress t,

The coefficient of the stress state for such a specific pressure distri-
bution diagram is found as the mean coefficient of the five regions:

nyy — MAcAC - nopCE + nEI;EF+ nppFD+nppDB (V.36)

where n,c, ncp, etc., are the partial coefficients of the stress
state for the regions AC, CE, etc.
AC, CE, etc., are the lengths of the regions of the arc
of contact (Fig. 182).

Each of the partial coefficients can be calculated if the functional
relationship p, = f (z) corresponding to the given region is inserted
into equation (V.3).

At the beginning and end of the arc of contact (the regions AC
and DB) the quantity p, is expressed by equations (I11.60) and (II.61).
After substituting this value into equation (V.3), and taking into
consideration that

l

dI:ﬁdhx Lo=§ =1
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we obtain
man o P! hgo[((s —1) g \0ac 1] dhy (V.37)
MO 2k AhdacAC AC Iy o o -
hC
for the region AC, and
hp
_ Pm __ l . Ny ™ opy .
DB~ ) = Aidp DB @ I (Opp i-1 / ) 1] dhz (V. 38)

]),1

for the region DB.
After integration

__lhe he \Pac .
Pac= /\II(SACAC < ]l(;) o 1 ] (VSQ)
and
__ o[ (I ) pB_ 4 V.40
on = AhaDBDJr g 1 (V.40)

where h, and A are Lhe thicknesses of the rolled sirip at the
points C and D.

When nep and ny, are to be determined, i.e., for the regions
CE and FD, we substitute the value of p, from equations (I1.63)
and (I1.64) into equation (V.3). Then

h

_ Il(
Rep= MA/zCI; S <pc+ taanCI log. 3~ >dh°‘
F

and
h
b
[} Dy
"ED = QRALTD <pD i tancp“) loge ) dh,
hD
After integration

I [ Pc
"CE = ARCE { (hc— h’)+ztan(pCE

X [hc—hE<1 + log, ;CN} (V.41)

1
2tan 9Fp

x [ o — s <1—loge ’““)]} (V.42)

and

L
nFD_AhFD 2] (/ll hD)+
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For the zone of complete slicking EF the coefficient ngy is deter-
mined by substituting the value of p, from the expression (II.68)
into equation (V.2):

h

! : Y hg
. *:EWS {pE+kLA(/z,,;—hx)—(ZTAhn)loge—;l—i‘]}dhx
h
F

After integrating
l | i
Mer o { [g_g— — Al + 24 (/zE—/zF)J (hg— hg) +
- (1 = Al) hylog, ’LE} (V.43)

Substituting the partial coefficients n,¢, npy, neg, hrp and
nyp found from equations (V.39), (V.40), (V.41), (V.42) and (V.43)
into equation (V.36) we calculate the value of the coefficient ng
in equation (V.4).

7. SIMPLIFIED METHODS OF DETERMINING THE EFFECT
OF THE EXTERNAL FRICTION ON THE PRESSURE

The application of the method of determining ng, which has been
considered above, requires lengthy computations. Therefore
simplified methods may be recommended for calculating the coef-
ficient ng.

For a ratio of [ : h, somewhat greater than two, and particularly
during cold rolling, the region of stagnation (sce the region EF
in Fig. 182) is comparatively small and the curvature of the spe-
cific pressure diagram may be neglected, i.e., we may assume that
EF -: 0 in equation (V.36) and hj -= hp = h, in equations (V.41)
and (V.42). In addition, if the ratio I : kA, is not too large (not more
than 4 to 5) we can also neglect the reduction in the pressure over
the region CD in comparison with the results given by the theory
of dry friction; for an approximate calculation the value of p, can
be taken over the whole arc of contact according to equations (II.34)
and (II.35).

In this case we assume that in equations (V.39) and (V.40)

GAC_(SDB_G lJ;Ah hC=hD:hn
and that after substituting the values of n,. and rnpy thus ob-
tained into equation (V 36)

no=gar | (32 )"+ (%)~ 2] (V.44)
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Expressing Ih— in terms of —"— and proceeding from the condition

that the speclﬁc pressures caliculated from equatlons (I1.34) and
(I1.35) are equal at the neutral section, i.e., when h, = h,, we obtain

6—1(”")—1—11 1)(”n)—1 (V.45)

() g6 0 (=]

Substituting this value of /'1—0 into equation (V.44) we find thal the

from which

coefficient which takes into account the effect of the external friction
on the pressure exerted by the metal on the rolls can be expreszed
by the formula suggested by A. Tselikov in 1939:

YL - «/L<a-~1> ”n> —1] ’ (V.46)

The mean specific pressure can be determined if we multiply both

"

sides of this equatlion by 2k, assuming that ng = nj = 1:

2hy hy N\ 0
~ 2k e (W) ~1] (V.47)
or
o 2 [y hn \ 0
P2k s () [ (e )" =1 ] (V.48)
where & =~ 0.57n;n,1n,05 in accordance with equation (V.d);
21
b=p—r (V.49)

h, is Lthe depth of the rolled strip at the neutral section.

The quantity h, entering into equations (V.46) and (V.48) can
be found from equation (V.45). Carrying out certain transformations
on it we obtain

] 14
|/ T (R

hy 5+1

(V.50)

The value of the ratio 2—" calculated from this equation is shown
1

on the graph of Fig. 183.
To simplify the use of equation (V.46) or (V.47) in calculating
the specific pressure, a diagram is shown in Fig. 184, plotted from
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these equalions and characterizing the dependence of the coefficient
ng on 6 for different reductions.

According to this diagram the mean specific pressure increases
considerably as the reduction, cocfficient of friction and roll di-
ameler are increased.

This melhod of calculation using equation (V.46) can overestimale
the value of ng for large cocfficients of friction. In the case of hot

ho .
7 Ah/ho=50%
140 =
136 //
a2f A
/ 40
128
124 /'/
116 -
112 y — 20
108 e
4 10
104 >
/
2 4 6 8 10 1214 16 18 20
0=2ul/8n

Fig. 183. Ratio % as determined by equation (V.50)
1

rolling when the ratio I : k,, equals more than 4 to 5, the regions
CE and FD (Fig. 182) can be considerable; in this case a lesser
error will be incurred in the calculation if we put 1, = k& and not
Tx == UPx OVEr the entire arc of contact.

Making these assumptions, we put

pc=pp=2k
]lc=h0 hEthzhn }ZD=]11
Ah
tan QPcp= tan Crp =~ T

in equations (V.41) and (V.42).

We next find the value of h, from the condition that the spe-
cific pressures calculated from equaticns (I1.63) and (I1.64) are the
same for the neutral section:

2l h 21 h
pn=2k+km lOge h—::—=2,k—}—k;H ]()geh_;1
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from which
hn =V Tyl (V.51)

After substituting these values into equalions (V.41) and (V.42)
and determining n¢. and n., from equation (V.36) we find the

, an., .
" 7 P% w045 w0 35 g0 25 225 W
i ] [ 1] ,
/ ‘ / 175
/ 711/
50 [ / / 1/
/1] / r
, /I 1/ V4 ) 4
/ 15
40 iViV.Ev / 7 %
/ / D P
Yivavi o SREpe 12.
L y. HE PZg .
J0 / (| /AT | P A
A4 yavd Pall 1
] 4 L A | A0
2.0 / Vo ] LT |
‘ WA LT 1 75
s 2.5
2 4 6 & 10 17 14 16 18 20 27 24 26 28 40
§=2ul/AR

Tig. 184. Variation of the coefficient ny, which determines the cffect of external
friction on pressure, with 6 for various %—h
0

value of the coefficient of the stress stale which takes into account
the effect of the extlernal friction

Al
, TR b et .
ng = 1-:- _ﬂ X ——_—Ah (\ 52)

This equation is Unksov’s formula which was derived by him
for calculating the force when metal is compressed between two
inclined plates.

During hot rolling when the ratio [: h, is approximately less
than 1.5 to 2 the zones of slipping are small. In this case (see
Fig. 53c) the diagram of the specific pressure will in the main be ex-
pressed by equation (I1.68).
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Then obviously the coefficient of the state of stress must be cal-
culated pulting EF = [ in equation (V.36); when hgr is deter-
mined we musl put

Pr= .Zk h’E:'h‘O hF:hi

in equation (V.43).
After substitution we have

Ry = (1 -+ Aly) 40 Jog, o ’10 1 A 20k — hy) (V.53)

where, in accordance with equation (II.69),

( Al >2 7 (V.54)

We determine the quantity m from the assumption, recommended
by A. Korolev, that at the point of entry the contact shear stress
T = k.

D S

Fig. 185. Assumed distribution of the contact shear stresses during
hot rolling when the ratio [: A, << ~1.5

We further assume, as in the derivation of equation (I1.67), that
T, varies according to a linear law and at the neutral section T, ~— 0

(Fig. 185).
Then
To— ki}:_——::_ (V.55)
from which, in accordance with equation (II.58a),
n— k20 (V.56)

l (ho— hn)
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and after substituting n into equation (V.54)

2 _ .
A= A (Vo1

Substituting this value of 4 into equation (V.53) we obtain

: A h ho 20 (2Ah — hy) )
= + T ) A Lo eeaR T An) ;
o= [<1 A Ty ) B0 08 hy T R (g =Ty ] (V.58)

The quantity h, can be found from the condition that p, == 2% in
accordance with equation (I[.68) when A, = A;.

To simplify the calculation we can with sufficient accuracy assume
that

hn = Vh1—ho
It should be noted that for the ratioﬁl— < 1.5 to 2 the coefficient
m

of the effect of the external friction is insignificant, and accordingly

no large error is incurred if we take a value for this coefficient corre-

sponding to compression of a prism, taking into consideration the

similar law for the distribution of the contact shear stresses, i.e..

assuming that v, = k at the boundaries and 1, = 0 at the centre.
Then

VrAh -
neg=1+—47—— 3y i) (V.59)

8. THE EFFECT OF THE TENSION ON THE PRESSURE
OF THE METAL ON THE ROLLS

The effect of the tension on the pressure, according to the
formula (V.6), is taken into account by the coefficient ng. From the
equation of plasticity the specific pressure decreases at least by # o1 %
on the average owing to the tension, where ¢, and o, are the tensﬂe
stresses in the rolled metal at the entry and exit.

The above coefficient can be expressed approximately as:

ng— (11—t (V.60)
Pm

where p,, is the mean specific pressure when the tension is absent

C is a coefficient a little less than unity, which takes into

account the reduction in the effect of the external

friction on the specific pressure owing to the tension.

For rolling, when the ratio I: h, is in the region of unity and

the effect of the external friction on the pressure exerted by the
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metal on the rolls is small, ¢ =1 and equation (V.60) may be
recommended for praclical calculations. At the same lime it is neces-
sary to bear in mind thal Lthe application of back lension is more
effeclive in reducing the pressure of the metal on the rolls than the
applicalion of front tension.

During cold rolling of thin strips the reduction in Lhe pressure,
owing Lo Lhe tension, is more pronounced due Lo the decrease in Lhe
effecl of external friclion and local elastic compression of the rolls.
In this case the cocefficient ng should be calculated from the formu-
las (I1.31) and (I1.32) for (he mean specilic pressure.

The pressure exerled by the metal on the rolls, when the effecl
of the tension is laken inlo account, can be found from the area
of the specific pressure diagram over the arc of contact (see Fig. 41).
If Lhe tension and the functional relationship p, = f (z) are known,
then, wilh the assumplions made in deriving equation (V.46), the
mean specific pressure is given by

ho

2k e i\ 7 ho \® i .

s ) (@b =0 (G5 ) 1 | dia -
hn

hn

+ [ @ - (%)6_1] dlzx} (V.61)
hy

The solulion of this equalion was given by the author; it leads,
however, to cumbersome final formulas which are unsuitable for
practical calculations. To obtain a simpler formula which enables
the pressure of the metal on the rolls to be determined with the
effect of tension taken into account, let us solve this problem by
approximation.

The value p,, as in the preceding method of solution, will
be found from the differential equation derived above [see (I1.13)]
for the distribution of the specific pressure over the arc when slip-
ping takes place with constant p, and when the influence of the
zone of sticking is neglected. To simplify the solution of equation
(I1.13) we assume that 2k =~ p, in view of the smallness of tan ¢,.
and, consequently, of the first term in comparison with the second
when thin strips and bhands are cold rolled. Then equation (I1.13)
assumes the following form:

1 . _— %3
&2(14_5)& (V.62)
Dx hy

2ul
where § =

Afler integrating we obtain

pe = hi%C, (V.63)
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for the zone of backward slip, and
P =0, (V.64)

for the zone of forward slip.
The quantities C, and C, are found from the condition that
for hy = hy

px=Eolk
and for h, = h,
P &2k
Then
pe=82k (72)" (V.63)
for the zone of backward slip, and
Ny Y\ 6--1
o .2k (-* 66
pa— B2k () (V.66)
for the zone of forward slip,
0o (1

where  E == T—35 and &; =1 — 7 -

We substitute these values of p, into equation (V.2):

w2 go<”0>° Y dh, - \§1<”* >°“d/ ] ven

After 1ntegrat1ng we obtain the formula for determining the mean
specific pressure with the effect of the tension and external friction
taken into account:

hg \6-2 o
Pm — Ah{go §—2 I:( > +§1 6 2 N

)=} e

The quantity &, appearing in this equation is found from equations
(V.65) and (V.66), proceeding from the condition that for h, = h,,

Px == Eolk < o )6 ! —£,2k ( Ry >6+1

hn—]/ S0 p-t1p0tt Ay

If we take into account the effect of work hardening and assume
that at the entry £ = %, and at the exit & = k,, then we can calcu-

20-662

from which
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late the specific pressure approximately from the formula
1 h I; 6-2 h
pm:'Z'h_{EO?‘kO 6__02 [(%) _1]+§12k1 6-{12 X

X [(Z—f)f’“—Q} (V.69)

Using a similar method and various simplifications several for-
mulas have been derived for taking into account the effect of ten-
sion on the pressure of the metal on the rolls.

'S Rolling with
2 } ront tension
v Y
3 N .
ﬁé /0 N '\\ ¢0

N
815 ! - (e
S AN
Sl Rolting with NSO
& back tension !
S 25 ANt 2
% \\.
l?s 30 D - \Q’o
g
]

W75 95 w0 7%

Front and back tensions, kg/mm?

Fig. 186. The effect of back and front tensions on the decrease
in the specific pressure during the cold rolling of steel strip for
reductions of 20, 30 and 40% (W. Lueg and F. Schultze)

The effect of the tension on the pressure of the metal has been
the subject of detailed experimental investigations. The resulls
of these investigations confirm the correctness of the formulas (V.68)
and (V.69). When the tension is increased a considerable reduclion
in the specific pressure is observed; at the same time applicalion
of the back tension results in a more effective reduction in the pres-
sure as compared with the front tension (Fig. 186). Further, it
is inleresting to note that this difference in the effects of the back
and front tensions on the pressure increases as the reduction in-
creases, and, conversely, diminishes as the reduction is reduced. It
follows from Fig. 187 that for rolling with a reduction of 20% the
difference in the reduclion of pressure as il depends on the back and
front tensions is considerably less (about 5%) than for rolling with
a reduction of 40%, when this difference amounts Lo 20%.

According to the data of W. Hessenberg and R. Sims, the specific
pressure of the metal on the rolls, pn, can be expressed as follows
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when the effect of tension is taken into consideration:

b= (1 — 200

where pr, is the mean specific pressure without tension.
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Fig. 187. The mean specific pressure during the cold rolling of
steel (0.08Y%5 C) with a reduction of 20% for various ratios of the
strip width to the length of the arc of contact (g == 2 mm and

D = 184.7 mm; the lubricant: an emulsion). The curve is plotted
from the test results of W. Lueg and A. Pomp

Structurally this equation is similar to the equation (V.60) derived
above; this confirms the possibility of finding by this method the

"

approximale value of ng, i.e.,

m 00+01
0,:1—_’—

o (V.70)

9. THE EFFECT OF THE WIDTH OF THE ROLLED STRIP
ON THE PRESSURE

The nature of the effect of the width of the rolled sirip on the
specific pressure was considered in Chapter II, Seclion 15. TFrom
the diagrams of the specific pressure distribulion over the width
of the rolled strip, given earlier (see Figs. 77, 79 and 80), we can
draw the conclusion that the mean specific pressure diminishes as
the width is reduced. If the width of the strip is close to its depth or
the length of the arc of contact, then obviously the specific pres-
sure will be considerably less.

Thus, as the ratio of the width of the rolled slrip to its depth
or the length of the arc of contact is reduced, the remaining condi-
tions being the same, the mean specific pressure of the metal on the
rolls diminishes.

20%
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This phenomenon is confirmed by experimental investigations
into the effect of the widlh of the rolled strip on the overall pres-
sure of the metal on the rolls. During these investigations it was
noticed that the effect of the width of Lthe strip on the pressure mani-
fests ilself only when the width varies within definite limits and

o K 3

\
A

.
X [
X

/

Mean specific pressure, kg/mm?
(]
¢

(S

10 20 30 40 50
Initial width by, mm

Fig. 188. The mean specific pressure during the hot rolling

(1,050°C) of steel 45 with various reductions and for various ratios

of the strip width to the length of the arc of contact; 25 == 15 mm
and D == 178 mm (A. Grishkov):

1 -a reduction of 42.5%; 2—a reduction of 23.5%; 3—a reduction ol 15",

when the ratio b,, : I becomes approximately more than five; for
a further increase in the width there is no change in the mean pres-
sure (Figs. 187 and 188). In the tests of A. Grishkov (Fig. 188) the
length of the arc of contact was:

Al

m I, mm
0.15 ~14
0.235 ~17
0.425 ~24

Thus the ratio b : [ for areduction of 15% did not exceed 3.2; for
a reduction-of 42.5% it did not exceed 1.9. Consequently, the curves
could not reach the portion which is parallel to the axis of abscissas,
but their character indicates that they are close to this portion.
The effect of the width of the strip on the mean specific pressure
is largely explicable in terms of variation in the state of stress. As
spreading takes place the specific pressure diminishes due to the
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Lja‘ and as a resull of the

reduclion in the stress g, relative to

influence of the external friction.

In its general form Lhe effect of the widlh of the strip can be
represented as a producl of lwo new coefficients n;, and n;, supple-
menling the coefficient n, of the stale of stress, whose values are
less than unity:

Pm  mnung2k (V.71)

where n, takes account of the effect of o,
n; lakes accounl of the variation in the cffect of the exter-
nal friction in connection with spreading.

The first of these coefficients, ny, affects the specific pressure accord-
ing to equation (V.3) within the limits 1 to 1.15. When strips are
rolled with free spreading and when the ratio b : 1 ~ 1, i.e., when
there are favourable conditions for the melal to spread,

0o X O3

and, in accordance wilh equation (V.3), we obtain
Pm = Ns0q

where

nglk
Pm = 17

As the width of the strip is increased or as its freedom to spread
is reduced, the sitress o, increases and the coefficient £ in equa-
tion (V.3) varies accordingly:

0o
Oy Px 't Ox

Px_a.';c
2

For two-dimensional deformation in the limil, ¢, takes the value
given by
Px+Ox

02 = 5

for this p,, increases by 15%.
Consequently, the first of the above-mentioned coefficients can
be expressed as:

- :_132i§2— (V.72)
where E is found from equation (I.66).

The influence of this coefficient on p,, was analyzed in more detail
by A. Grishkov.
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The second coefficient, ny, affects the mean specific pressure in
a similar manner as over the width of a parallelepiped which is
being compressed. In connection with this A. Dinnik recommends
that the formula of S. Gubkin be used for this purpose, according
to which the mean specific pressure during the compression of a
parallelepiped is

P — 2k (1 Sl “}_‘l’> (V.73)
where a and b are the dimensions of the sides of the parallelepiped,
with a < b.

From this equation, comparing the specific pressure during the
compression of the given parallelepiped and a parallelepiped with
an infinitely large side b, we obtain approximately for the cases
of rolling where & > I:

3b—1 1
t+—uy

(V.74)

ny - ;
H’”W

where & and h are the mean width and depth of the cross section
of the rolled strip
1 is the length of the arc of contact, corrected for
the condition under which the compression
takes place; it can be determined from the
equation

- tan % -
l=VrAn\1— m (V.75)

As has been mentioned above, for rolling of mectal when
l:h, <2 the slip along the surface of the rolls is nearly absent.
If we assume as an approximation that

p=0.5
we obtain
1 3b—1 |
.
" h ,
1+ 4h

Summarizing the above we must point out that forrrolling with
free spreading in a smooth barrelled or grooved rolls, when the
ratio

bm
LU )
Vrah =
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the effect of spreading on the pressure must be taken into account,
by reducing the coefficient of the state of stress by multiplying it by
n, and ng, the values of which are found from equations (V.72)
and (V.74).

10. EKELUND’S FORMULA

S. Ekelund (Sweden), procceding from his experimental results,
suggested the following formula for the calculation of the specific
pressure of the metal on Lhe rolls:

p-=(1--m)(2k--nu) kg/mm? (V.77)

where m is a coefficient characterizing the effect of the external
friction on the specific pressure
2k is the specific resistance in static compression, which
obviously corresponds to 1.15k, kg/mm?
1 is the viscosity of rolled metal, kg sec/mm?
u is the strain rate, sec™.

The first term (1 -- m) of this equalion takes account of the
increase in the resistance to deformation as a result of the friction
of the rolled metal along the surface of the rolls. The coefficient
m in this term was determined by S. Ekelund from the theory of
maximum shear stress, assuming that the specific friction forces
in the zone of backward slip are given by t, = up,, whilst in the
zone of forward slip they are 1T, == k. To calculate this coefficient
he gives the following equation:

:1.6}1, |/ r(lI,O——/Ll)—1.2(h0—hl) (V_78)

me ho+hy

where r is the radius of the roll.

The second term of equation (V.77) represents the resistance to
deformation when extlernal friction in the direction of rolling is
absent (when o, = % and o5 = 0); the product mu in this term
lakes account of the effect of velocity on the resistance to deforma-

tion.
S. Ekelund expressed the strain rate by the formula

2v A—h

~ r 7C
U= A (V.79)

After substituting the values of m and u found from equations
(V.78) and (V.79) into equation (V.77), and multiplying both sides
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of the equation by the contact area, we obtain Ekelund’s formula
in its complete form, which expresses the overall pressure exerled
by the metal on the rolls during the rolling process:

ot by T L6 Vi thy— hy) - 1.2 (hg—hy) -
P T !/r (ho—hy) [_1 i hg-i-y ] :

ho—h
omp ‘/%
x| 2k ¢ — T

P ] kg (V.80)
where b, and b, represent the width of the rolled strip before and
afler rolling, mm
v is the peripheral velocity of the rolls,
mm/s.

The values of 2k and m in this equation were determined by
S. Ekelund only for heated steel, by comparing the results obtained
from this formula with the test data. From this comparison he de-
rived the following empirical formulas for 2k and %:

2k —(14—0.017) (1.4 +-C+ Mn) kg/mm? (V.81)
1n=0.01(14—0.012) kg sec/mm?> (V.82)

where ¢ is the rolling temperature, °C
C is the carbon content, %
Mn is the manganese content, %.
These equations are valid for temperatures > 800°C and manga-
nese content <C1%.
To calculate the coefficient of friction S. Ekelund recommends
the formulas (V.33) and (V.34) derived by him.
Subsequently corrections were introduced into Ekelund’s formula,
according to which the viscosity was determined from the equation

1=0.01(14—0.01¢) C kg sec/mm?

where C is a coefficient depending on the velocity of rolling, the
values of which are given below:

Velocity of rolling, m/s Coefficient C
Up to 6 1
6 to 10 0.8
10 to 15 0.65
15 to 20 0.60
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For the calculation of the value of 2k a formula is recommended,
in which besides the influence of carbon and manganese on the re-
sistance to deformalion, the influence of chrome is also taken inlo
account,

2% (14— 0.01/) (1.4~ C - Mn - 0.3Cr) (V.83)

where Cr is the chrome content, %.

There are, however, no dala available on the applicability of this
formula. Apparently this formula is suitable for sleel containing
no more than 2 to 3% Cr.

Iikelund’s formula was derived in 1927 and is one of the first
serious atlempls Lo express the pressure of the metal on the rolls by
a single equation which, as far as possible, would Lake into account
the basic faclors affecting this pressure. According to this formula
the specific pressure depends not only on the mechanical properties
of the rolled metal, but also on the strain rate, coefficient of external
friction and the ratio of the length of the arc of conlact o the mean
depth of the rolled strip.

But in spite of this feature Kkelund's formula should not in any
way be regarded as solving the problem of the determination of Lhe
pressure of the metal on the rolls. In analyzing the formula itself
and ils derivation we note that it has a number of shorlcomings,
due to which results obtained from this formula sometimes deviale
markedly from the experimental data.

The shortcomings of Ekelund’s formula are the following:

(1) the first term of the formula (1 -~ m) is calculaled approxi-
mately, and hence the role of the external friction is not deter-
mined with sufficient accuracy;

(2) the effect of the tension on the pressure exerted by the melal
on the rolls is not taken into account at all;

(3) the viscosity is determined only tentatively;

(4) the influence of carbon and other constituents on the resist-
ance Lo deformation of steel is allowed for not quite correctly; for
example, the increase in the ultimate strength of the steel
with an increase in carbon, obtained from the formula, when the
temperature cxceeds 900°C, disagrees with the test data given
above.

In spite of these shortcomings Ekelund’s formula still gives rel-
atively correct results for hot rolling of low carbon structural steel.
This is explained mainly by the fact that the quantities 2k and m in
this formula were calculated from the test data of J. Puppe.

To a certain degree of approximation Ekelund’s formula can
also be used for the rolling of other metals, if the values of 2k and
u corresponding to the given rolling conditions are substituted into
the formula.
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11. GELEJI’S METHOD

To calculate the pressure exerted by the metal on the rolls
during rolling A. Geleji (Hungary) suggested a formula whose origi-
nal form was the following:

km:kf (1 ”;" CP‘ZT({?/_;> (V84)

where k,, is the mean specilic pressure, kg/mm?

k; is the resistance to linear deformation (the quantity
corresponding to o,), kg/mm?

C is an experimental coefficient, initially recommended
to be taken as equal to 5.5, but subsequently depend-
ing on the Iy : A ratio, and determined from a graph
(Fig. 189)

u is the coefficient of friction

}/rAh = [ is the length of the arc of contact

n is an index, taken to be equal to four

v is the peripheral velocity of the rolls, m/s.

The value of the coefficient C, shown in Fig. 189, was obtained
by A. Geleji by analyzing a series of test results, principally the
data of O. Emicke.

For the determination of the value %y for hot rolling of plain car-
bon steels A. Geleji recommends the formula

k; == 0.015 (1,400 — ¢) kg/mm? (V.85)

or the use of Kkelund’'s equation (V.83).

For a more exact determination of k; A. Geleji also recommends
that the graph shown in Fig. 190 be used.

A. Geleji recommends that the coefficient of friction be deter-
mined from the equations:

p=1.05—0.0005¢ — 0.056v (V.86)
for steel rolls,

u=0.94 —0.0005¢ — 0.056v (V.87)
for hardened cast iron rolls, and

p=10.82—0.0005¢t — 0.056v (V.88)

for polished steel or hardened cast iron rolls,
where v is the peripheral velocity of the rolls, m/s
¢t is the rolling temperature, °C.
These formulas are valid for ¢t > 700°C and v << 5 m/s.
Subsequently A. Geleji has suggested an improved method for
the determination of the pressure of the metal on the rolls. The main
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Fig. 189. Variation of the value of the coefficient C in formula (V.84) with the
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Fig. 190. Variation with temperaturc of k¢ of a plain carbon steel (C << 0.6%;
Si << 0.5% and Mn << 0.8%), characterized by ultimate strengths of 40, 60,
80 and 100 kg/mm?2 in the cold state (A. Geleji)
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point of this method is that the value of the pressure is calculated
by determining the area of the specific pressure distribution diagram
over the arc of contact, dividing it into seven separate elements
(Fig. 191) and subsequently summing according to the formula

Ty o Tod-Ta Ty -Ts+ T Ty

lfm ld

where k., is the mean specific pressure
Io is the horizontal projection of the arc ol contact
Ty, T,, etc., are the arcas of the individual eclements of
the specific pressure distribution diagram
(Fig. 191), given by the equations:

7 ki "i;".\‘ol 2, \
Ty = kyy, (x,—x¢y)
Ta= 5 (kg max — hisy) (€1 — Zor)
T5 = kg (2o — o)
Tg- % (Fx max — Kxoa) (X2 — Zo2)
T,=kgnly J

where x5, and zy, are the line segments determining the bounda-
ries between the zones of slipping and stick-
ing (Fig. 191)
z, and z, are the lengths of the zones of backward slip
and sticking
and k;, are the resistances to linear deformation at

entry to the rolls and at exit respectively
o1 and k., are the resistances to deformation on the bound-
aries of the zones of slipping and sticking

ky

1

k

Ky oy 18 the maximum value of the resistance to
deformation

ksn is the supplementary mean resistance to defor-
mation.

In developing the above method A. Geleji assumed that the total
pressure of the metal on the rolls is made up of two parts: the pres-
sure necessary for the proper reduction of the metal and the pres-
sure expended to overcome the internal shear in the metal.
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Fig. 191. Determination of the pressure exerted by the metal on the I'O‘I.IS by
summing component areas of the specific pressure diagram (A. Geleji)
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Therefore, according to A. Geleji, the mean resistance to deforma-
tion is

km = kam -+ ksm

where kg, is the mean resistance to deformation when the metal
is compressed
k.n is the supplementary mean resistance to deformation,
caused by “internal shear”.

This division of the resistance to deformation into two compo-
nents is apparently quite arbitrary, and it should be understood
that %, takes account of the resistance to the external friction,
and k,n takes account of the supplementary resistance to the inter-
nal shear. For the calculation of A, the formula below is recom-
mended

2 [ h
ksm:3_1/_§kf7d X A_;z (V.90)

where r is the radius of the roll.

The lengths x; and zy, are determined from the condition that
on the boundaries of the zones of slipping and sticking the shear
contact stresses are

TO = k;x!J. == 058kf

The value of k. (p,) in the zones of slipping is found in accordance
with the theory of dry friction, whilst in the sticking zone it is
determinced from the linear law of variation of friction forces, shown
diagrammatically in Fig. 191. At the same time it is assumed that
at the neutral section

T = Atg &~ 0.571y

The remaining quantities appearing in equation (V.8Y) are found
by the usual methods.

It should be pointed out that this method of calculating the pres-
sure suggested by A. Geleji is correct in principle and, indeed, the
most precise method, since it takes into account the largest number
of factors having an effect on the pressure. We cannot, however, agree
with A. Geleji that the maximum specific pressure coincides with
the neutral section and that the specific friction forces at this
section are non-zero. It has been shown above that the maximum
specific pressure is somewhat displaced from the neutral section
opposite to the direction of rolling, whilst the friction forces at
the neutral section are zero.
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12. THE FORMULA OF SIMS

This formula was proposed by Sims (England) in 1954. It is
derived by solving the differential equation of equilibrium of an
element [see equation (II.5)] isolated from the metal being rolled
(see Fig. 39)

d (Oxhy —
—(3; ) =2 (petan gy F Ty) (V.91)

where the minus sign refers to the zone of backward slip.
The values in this equation are:

dr~rdg tangp,~ ¢ o ha=T,
where T, is the longitudinal force arising in the metal being

rolled as a result of the stress o,.
Next we obtain

‘ldTw S 9 p F 2r1a (V.92)

Proceeding further R. Sims makes two assumptions:
(1) sticking takes place over the entire arc of contact and con-

sequently
Tx=+k
when the direction of T, changes at the neutral section;

(2) the force T, using the results of E. Orowan for a body
compressed between two inclined rough plates, is taken equal to

Ty=hy <px~—2— k> (V.93)

It should be noted that the first assumption gives only an appro-
ximate value of the friction forces close to the neutral section;
neither is it exactly true for a large [ : h,, ratio (roughly > 4) at the
beginning and at the end of the arc of contact, where slipping
0CCurs.

The sccond assumption is in principle analogous to the assump-
tion made in deriving the differential equation of specific pressure
(IT.12) with the only difference that then the mean value of the
stress across the depth of the cross section, from the plasticity equa-
tion, was taken equal to [sce cquation (II.8)]:

On= px— 2k

In the given case, in accordance with equation (V.93), Sims as-
sumes that this stress is

Op =T = px—- 2k &~ p.—0.785 (2k) (V.94)
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Thus for a given value of o,, which in the present case depends
on the contact stresses 7, and the boundary conditions, the stress
p~ according to the results given above equals

Px = Ox ' 2k
whilst in his results Sims has taken
Dax = Oy - 0.785 (2k)
i.e., 0 to 21.5% less than in the case of simple compression. It is
doubtful whether this assumption can be considered well grounded.
It should further be pointed out that the two assumptions made
by Sims in the derivation of his formulas are incompatible and con-

tradict each other.
If we assume—as Sims does—that the contact shear stresses are

.=k

then in this case the position of the contact surface relative to the
direction of the principal axes of stress is given by the top of the
circle (see Fig. 19). Consequently, the value of the normal stress
(px) on this plane and that of the stress (o,) perpendicular to it must
be the same:

Px=0x

We can arrive at the same result, analyzing the equation of plas-
licity (I.70) for two-dimensional deformation:

(Px*zo'x >2+ T2 = f2

From this it follows that when v, = k&
Px— Ox =0

i.e., in solving equation (V.92) Sims is not justified in using the
result of I&. Orowan.
It should have been assumed that

Ty=lypx

After substituting v, = k, T, from the expression (V.93) and
hy ~ hy +re? into equation (V.92), and assuming the value of k
constant over the arc of contact, we obtain

(h+1¢%) dps - (P — k> 9% dp = 2rp=p dp T 2rk dg
or

e F 2 =
dpx:%_i;q)—zrkd(p (V.95)
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After integrating with the initial conditions ¢ == 0, ¢ = o and
px == 2k we obtain

Px __
)2' = I( )Ee7— h I_ A *_ ‘/7 lan™1 <“/‘h: (l
— l/— tan™! (‘/ -hr— q;> (V.96)
1
for the zone of backward slip, and
px T hy A TN
SE= l 0g. T + = T —}—V Wldll 1 <“/-hT (p) (V.97)

for the zone of forward slip.
It should be pointed out that these equations are analogous to
equations (I1.41) and (II.42) which were published in 1946 by

5
/f’//7,=300
V" 2850
4 // - 200
7/’ // 150
§3 7// // = 100
/s
Ry ARy
A /// i: 20
Z/ 0
7 5
T

0 ar 0z 03 84 05 06
Reduction per pass €

Pm
2k
ratios r: hy, according to the formula of Sims (V.99)

with reduction for various

Fig. 192, Variation of the ratio

A. Tselikov. If in equations (II.41) and (II.42) we put § = & =1,
introduce the factor JtZin front of 2k and set v = k, then they will
be identical.

21—-662
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Substituting the above values of 1nto equation (V.2):

a

pm=21 § <%> dg (V.98)

we obtain the formula of Sims for determining the mean specific
pressure, i.e., the coelficient of the state of stress:

.»-— (2]//1 tanl“/qi—e——}—
_—‘/lze ‘/-_l:'TlogO!Ilz + 5 ‘/1 l/h logL s > (V.99)

_ AL
IO'

The ratlo /:—” in this equation is found from the condition that for

, 1
o =7 and hy = h, the values of the specific pressure given by equa-

tions (V.96) and (V.97) are the same.
According to the formula of Sims the coefficient of the stress

state depends only on the reduction ¢ and the ratio }% The values

of this coefficient calculated from the formula of SiIl’1]S are shown
in Fig. 192.

where ¢ -

13. A BRIEF SURVEY OF THE EXPERIMENTAL RESULTS
CONCERNING THE PRESSURE OF THE METAL
ON THE ROLLS UNDER PRODUCTION CONDITIONS

Thanks to a marked improvement in the methods and devices
for force measurement many detailed investigations into the force
parameters have been carried out during the last 15 to 20 years
on different rolling mills under production conditions. Particu-
larly cxtensive investigations have been carried out in the U.S.S.RR.,
where they are used not only for obtaining the required test data
concerning the actual forces acting on the rolls, but also for increas-
ing the capacity of the mills by intensifying the rolling conditions
as a result of a fuller utilization of the power reserves and prolonged
service life. Much was done in formulating and working out the meth-
ods for these investigations by E. Rokotyan, A. Gurevich, A. Chek-
marev and others.

Data on the measured values of the pressure of the metal on the
rolls and the torques necessary to rotate them during the normal
work of blooming mill 1150 are given below (tables 14, 15 and 16)
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Table 14
Force and Power Characteristics of Rolling
320 % 330 mm Blooms from Rimmed Steel Billets
(After T. Golubev et al.)

< I =

Sz £ = = = =5 S ‘.:E

Zz g s o = 8 2 ) B

g G s L 2, 3 s & 5 22
2 =< E = =5 > = Om ‘:D o

= 5 % ¢ iz 3 & £ & &8

z S8 @ a £ 52 g 0% & '8

0 690 - - - - - — —
I 592 98 14.2 1,155 2.13 1,371 7.0 106.4  0.187
[I 542 50 8.4 1,150 2.15 1,492 12.0 118.1 0.270
111 495 47 8.7 1,145 2.15 1,456 11.9 135.2 0.276
v 448 47 9.5 1,135 2.2t 1,415 11.3 127.3  0.337

K*
\Y 649 141 17.8 1,130 2.15 797 5.9 149.9 0.372
VI 564 85 13.1 1,120 2.08 771 8.7 152.0 0.456
VII 477 87 15.4 1,110 2.08 789 7.7 146.9  0.506
VIII 411 66 3.8 1,100 2.12 764 8.7 134.0  0.3585
K

X 388 87 18.3 1,085 2.20 747 8.7 149.9  0.69%4
X 306 82 21.1 1,070 2.16 889 10.0 141.7 0.780
X1 3M7x330 133 29.0 1,055 2.50 470 6.4 146.8 1.120

* K denotes turnover.

characterizing the forces which arise when blooms and slabs are
rolled.

A general idea of the magnitude of the forces arising during the
normal use of section mills is given by diagrams showing the overall
pressure of the metal on the rolls for cach pass, when a rail P-43
and a channel No. 30 are rolled on a rail and bar mill 750-800
(Figs. 193 and 194), and when a rail weighing 24 kg/m, an I-beam
No. 20 and a channel No. 20 are rolled on a 540 cross-country mill
(Figs. 195, 196 and 197). It follows from these diagrams that the
pressure exerted by the metal on the rolls in the majority of cases
is sharply reduced with each pass, which proves the imperfection
of the roll pass’design used. i

In sheet-rolling mills intended for hot rolling of steel the pres-
sure under the production conditions was measured by many inves-
tigators. According to the data of M. Zaikov and others the overall
pressure on the 850-560-850 breakdown stand of a three-high tandem
2150 mill was 380 to 670 tons, when 17- to 25-mm thick sheets were

21*
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rolled from 100- to 170-mm thick slabs of 08 to 10 rimmed stecl
C1. 3 and steel Cr. 4. Forsteel 1XB this pressure was 250 to 400 tons;
for steel 09I'2 it was 400 to 650 tons, and for steel 1X18HIT it was
150 to 750 tons. On the 850-560-850 finishing stand the pressure was
considerably higher, and it strongly depended on the thickness of
the sheets being rolled. When 3.5- to 5-mm thick sheets of 08 to
10 rimmed stecl Cr. 4 were rolled, the pressure on the average amount-
ed to 1,000 to 1,200 tons; for a thickness from 12 to 20 min the
pressure was 600 to 750 tons. The maximum value of the forces
measured in the finishing stand reached 1,865 tons (when 3.5-mm thick
sheets were rolled). In the case when 1,800-mm wide and 5.5- to

Table 15

Force and Power Characteristies of Rolling 320 x 330 mm
Blooms from Billets of
Steel 38XMIOA
(After T. Golubev et al.)

%

z . = =
- - = S 3 2 - S5
°g = E . o Z S £Z
. S= = = = - ° Z 3 L
2 23 g z 2 E S 5 2 -
8, == > = < e . O N o
ot — : < S Zx Ep Z= E:B S
3 83 E g 2 S = = g e
s 23 T o R = 2% 3 gz
z E3 3 & & 5 s ok = a7
0 690 — — — — — — — —
I 642 48 7.0 1,180 1.38 1,210 11.0 77.0 0.04
11 597 45 7.0 1,175 2.11 1,400 13.1 151.4 0.24
K*
1 630 70 10.0 1,170 1.33 1,070 9.4 107.1 0.077
v 567 63 10.0 1,165 1.83 1,340 12.2 141.5 0.24
\' 527 40 7.1 1,160 2.48 1,330 15.1 96.5 0.18
VI 487 40 7.6 1,155 2.25 1,440 16.2 136.2 0.41
VII 463 24 5.0 1,150 2.25 1,360 19.6 151.5 0.34
VIII 447 16 3.5 1,145 2.33 1,580 27.5 165.9 0.28
K
IX 574 56 8.9 1,140 2.23 945 12.4 147.6 0.31
X 514 60 10.4 1,135 2.07 930 11.6 152.7 0.63
XI 458 56 10.9 1,130 2.17 800 10.3 118.1 0.48
XII 405 53 10.6 1,125 2.17 %5 121 142.6 0.76
K
XIIIL 378 107 22.0 1,120 2.17 700 7.3 143.2 0.67
XIV 305 73 19.3 1,110 2.12 810 9.9 137.9 1.02

K
XV 322x330 108 25.0 1,100 2.52 680 9.2 158.7 1.20

* K denotes turnover.
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Table 16

Force and Power Characteristics of Rolling 140 < 650 mm
Slabs from Rimming Steel Billets
(After T. Golubev et al.)

< 2. g s
— = z S g a_ 5;
= E s = s @ s iz
A b= brs = o L e °© [ i
2 s g 2 S g R
z g e : S Zs oy g2 & 23
5 EE 3 < S g% = 3ZE 2 ZE2
S EE 5 B S Zz % 2% 3 £
Z =& = = = -2 = gL = 7
0 760 - - - - - — —
I 707 53 7.0 1,165 1.38 1,150 10.2  77.0  0.08!
I 667 40 5.7 1,160 2,260 1,320 13.6  81.6  0.22
K*
i 587 83 12,4 1,155 1.98 1,370 9.8 166.4 0.28
v 527 60 10,2 1,145 2,15 1,500 (2.5 151.1  0.55
v 464 58 11,0 1,140 1043 1,350 11.4 151.5  0.185
V1 412 57 12,0 4,130 2.0 1,340 11.5 161.5  0.50
V11 352 60 14.5 1125 2.21 1,440 125 146.3  0.436
VIl 295 57 16.2 1,005 210 1,290 11.0 156.7  0.70
K
X 648 320 4.7 1,105 2.25 215 5.7 1094 0.36
X 598 50 7.7 1095 2,25 355 7.5 841 0.41
K
X1 239 560 19.00 1,090 2,31 1,420 13.6 151.3  0.80
X1l 197 A2 17.6 1,085 2.87 1,350 15.0 106.5  0.81
XIT 1425650 55 28.0 1.085 2.60 1.520 14.1 151.0  1.45

* K denotes turnover.

8-mm thick sheets of steel 1X18HIT were rolled the pressure on the
rolls was 800 to 1,400 tons, whilst for a thickness of 24 mm it was
450 to 600 tons.

A. Geleji and others have investigated the forces which arise
when metal is rolled in a 3290 X 930-720-950 single-stand three-
high plate mill. According to the data of these investigators, the
actual overall pressure of the metal on tlie rolls is distributed very
unevenly between the passes (Fig. 198). In the first 12 passes or so.
when the temperature of the billet is still high (imore than 1,000°C)
and its depth is great, the pressure on the average varies [rom 100
to 600 tons, whilst with the subsequent passes it rises to 1,200 tons.

Detailed data concerning the forces acting on the rolls of con-
tinuous strip mills during hot rolling of steel were obtained by I5. Ro-
kotyan in investigating the force parameters of the 1680 mill. In the
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Fig. 193. The pressure of the metal on the rolls of a 750-800 rail
and bar mill during the rolling of a P-43 rail (T. Golubev et al.):

1 —pressure of the metal on the roll; 2—temperature; 3—reduction ratio
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Fig. 194. The pressure of the metal on the rolls of a rail and bar
mill during the rolling of a No. 30 channel (notations as in
Fig. 193)
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Fig, 195. The pressure of the metal on the rolls during the
rolling of a P-24 rail on a 540 cross-country mill:

I—mean pressure; 2—inaximum pressure; 3—specific pressure; 4—specific
energy consumption; § and 6—temperature and reduction ratio per pass
(N. Skorokhodov et al.)

§)~
Iy
6621200
S —t—lJ G
6081000 A7 340 §
Q R
% 54§ 00 A 300
S el 8 NV 2603
~ — 2 v ~
gl s T TV AN S
/ .
< 96 1 .536‘/ va ’/4'\//\\ 180 2
g R / 2
&\30‘ ‘53.0 "4 7 740&3
S24] B2 = 100™
241 S 2 -
§78 E) ’:/, } t“
[S9) 1Y | I
124 §12 -114 88
S — 16 £y
61 8 ‘ —— 1238
P S T N o 783
S 772 3 4 5 6 7 & 3 e
Pags number

Fig. 196. The pressure of the metal on the rolls during the rolling
of a No. 20 beam in a 540 cross-country mill:

l1—mean pressure; 2-—maximum pressure; 3—specific pressure; £—spccific
energy consumption; 5 and 6 —tempecrature and reduction ratio per pass
(N. Skorokhodov et al.)
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Fig. 197. The pressure of the metal on the rolls during the rolling
of a No. 20 channel in a 540 cross-country mill:
I—mean pressure; ?—maximum pressure; 8—speciflic pressure; 4—specilic
energy consumption; 5 and 6—temperature and reduction ratio (N.ZSko-
rokhodov et al.)
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Fig. 198. The pressure ol the metal on the rolls of a 3290 single-

stand three-high plate mill during the rolling of sheets of steel

Cr. 35.21, of dimensions 8.5 X 600 X 5,480 mm, from billets
having dimensions 220 X 500 X 1,300 mm
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roughing group the maximum pressure of the metal on the rolls
was reached in the first, broadside stand, where the roll diameter
is 950 mm. When a 2,000- to 2,200-mm long slah was rolled in the
lateral direction, the pressure in the first stand amounted nearly
to 1,500 tons. In the remaining stands of the roughing group (the
diameter of the working rolls being 600 mm) the pressure was mar-
kedly less; on the average its magnitude varied from 530 to 1,230
tons (Table 17).
Table 17
The Pressure of Metal on the Rolls in the Roughing Group

of a 1680 Continuous Strip Mill
(After E. Rokotyan)

Initial cross Reduction in the Pressure of metal on the
sccl(ion of Stoel stand, % rolls in the stand, tons
slab, mm

O S N I S O I 15 Ul | o | ooy

115x 1,040 08 rimmed  26.0 29.2 31.6 34.5 720 550 625 750
110X 970 10 killed 27.1 23.2 37.5 335 1,180 720 950 980
115950 15 rimmed  29.5 28.4 381 35.3 1,440 800 1,050 1,000
110X 970 20 killed 2604 234 38.7  34.2 1,395 740 1,080 1,030
115x 1,020  Cr.2rimmed 25.2 249 34.9 34.7 1,345 770 1,230 1,050
100:<970 Cr. 3 25.7 29.6 33.1 37.1 1,400 800 1,065 1,200
100 % 970 Cr. 3 25,5 35.0 32.5 37.9 1,500 920 950 1,230

The mean specific pressure in the roughing group ranges from 6 to
12.5 kg/mm? for 08 rimmed steel (the lower limit for the stand 1
and the higher limit for the stand IV), whilst for the rimmed steel
Cr. 3 and the steel Cr. 3 it is within the limits 6 to 17 kg/mm?2.

In the finishing group the first stands, i.ce., the stands V to VII,
are the ones loaded most, with the pressure of the metal on the rolls
reaching 1,000 to 1,420 tons (Table 18).

The mean specific pressure during the rolling of 08 to 10 rimmed
steels in the first stands of the roughing group is 22 to 28 kg/mm?;
in subsequent stands it increases up to 40 to 50 kg/mm?2.

The results of the investigations of A. Chekmarev and others, car-
ried out on this 1680 continucus strip mill, are of great interest.
In this case the forces were measured in the stands of the finishing
group of the mill when sheets of an alloy steel and shects of width
up to 1,510 mm were rolled.

The greatest pressure was also observed in the first stand of the
finishing group (i.e., in the stand V), where during the rolling of
1,430-mm wide sheets of a 12X5MA steel it reached 2,840 tons;
during the rolling of 1,510-mm wide sheets of 08 rimmed steel it
went up to 1,910 tons.
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During the rolling of alloy steel the specific pressure in the first
stands of the roughing group is approximately 30 to 40 kg/mm?,
whilst in the last stands it is approximately 40 to 70 kg/mm?2.

On the basis of the results of the investigations by E. Rokotyan
and A. Chekmarev we can assume that the maximum pressure in
the stands of the finishing group, per millimetre width of the
rolled sheet of a low carbon steel, is

g=1.25 to 1.5 t/mm
whilst for an alloy steel
g~ 1.5 to 2.0 t/mm

The pressure of the metal on the rolls during hot rolling of sheets
of aluminium alloys under production conditions was investigat-
ed in detail by Ii. Rokotyan on a 2800 four-high mill. He estab-
lished that the pressure of the metal on the rolls of this mill (di-
ameter of the working rolls is 700 mm), when sheets of aluminium
alloys with the approximate width of 2,200 mm are rolled, reaches
2,000 tons, i.c., it is somewhat less than during the rolling of steel.

The forces acting on the rolls under production conditions when
wide steel sheets are cold rolled were investigated by E. Rokotyan
on a continuous three-stand 1680 X 480-1250 four-high mill. The
maximum pressure on the rolls of this mill was observed in the
first stand. Thus, for example, in the case of rolling sheets 1,460 mm
wide and 1.2 mm thick, from 08 rimmed steel, with three passes
from a blank 1.2 mm thick, the overall pressure in the first stand
(for a reduction of 37.8%) reached 1,390 tons, in the second stand
(for a reduction of 22.4%) it rcached 1,060 tons, and in the third
stand (for a reduction of 7.76 %) it reached 700 tons.

The longitudinal tension of the rolled metal had a great effect on
the pressure, which on the average varied {from 14 to 21 kg/mm?2.

14. PRACTICAL DATA ON THE  FORCES ARISING
" DURING LONGITUDINAL ROLLING OF TUBES

The forces arising in tube mills during longitudinal continuous
rolling (the forces in the mills during Pilger and helical rolling
will be considered below, in chapters VII and VIII) were investigat-
ed in two-high mills with a short mandrel (automatic), in contin-
uous mills with a long mandrel, and in reducing mills.

I. Fomichev and V. Ostrenko have measured the pressure of the
metal on the rolls and the axial force on the mandrel during the
rolling of tubes with the diameter of 168 X 325 mm on a two-high mill
(diameter of the rolls being 920 to 960 mm) with a short mandrel,
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under normal production conditions. A part of the experimental data
obtained by them is given in Table 19.

Table 19

Results of the Measurement of the Forees During the Rolling of Tubes
Made of a Low Carbon Steel on a Two-High Mill with a Short Mandrel

Pressure on Axial foree

Dimensions of tube, mm Rolling tompvl'at‘m‘c rolls in the on ‘”‘"”‘“'9]
in the pass, °G Dass, tons in the pass.
tons
Diameter Wall thickness I 11 I 11 I 11
168 ) 1,110 1,050 215 205 — —
168 11 1o 1,060 200 175 48 50
219 8 1,125 1,080 310 307 — -
273 9 1,100 1,000 300 360 76 T4
273 25 1,150 [,120 270 250 — -
325 10 1,080 1,015 450 464 —

During the rolling of tubes 8 mm in diameter having a wall
thickness of 3 to 8 mm, on a two-high mill with a short mandrel,
the pressurc on the roll was 65 to 112 tons, whilst the axial pressure
on the mandrel was 18 to 32 tons.

According to the data oblained by V. Anisiforov whilst rolling
tubes on (140-250) mills with a short mandrel, the ratio between
the longitudinal force, Q, acting on the mandrel and the vertical
pressure of the metal on the rolls, P, is

Q- (0.4 10 0.5) P

for thin-walled tubes, and
Q (A5 Lo 0.2)P

for thick-walled tubes.

A detailed investigation into the pressure exerted by the metal
on the rolls during the rolling of tubes in continuous mills on a long
mandrel was carried out by Y. Vatkin and others under production
conditions. They have established that the pressure ol the metal
on the rolls varies considerably during the motion of the tube being
rolled. At the entry of the tube into cach pair of the rolls the pres-
sure is large; during the steady state motion it is sharply reduced
owing to the tension of the metal between the stands of the mill,
whilst at the exit it increases again. Thus, for example, during
the rolling of a tube 59 mm in diameter having a wall thickness
of 3.25 mm the pressure at its entry into the [ourth stand reaches
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57 tons; during the steady state motion it falls to 32 tons, whilst
at the exit it rises to 406 tons.

In tube reducing mills, as in mills of the preceding type, the
pressure of the metal on the rolls strongly depends on the tension.
This influence of the tension is particularly marked in three-roll
reducing mills ol modern design, which work with considerable
tension, as a result of which the tube diameter is reduced as well
as the wall thickness.

Stand number [

Fig. 199, Variation of ky (vesistance to deformalion), d (tube

diameler), s (tube wall thickness), P (pressure of the metal on the

three rolls of the stand) and ¢ (tension) in a stretch-reducing mill
as the tube passes [rom stand to stand

Fig. 199 shows a typical graph (obtained experimentally) of the
variation of the dimensions of the cross section of the tube heing
rolled, the pressure of the metal on the rolls and the tension in the
stands of the mill. After passing 3 to 4 stands the tension in the
tube becomes considerable and the pressure on the rolls drops sharply;
before the last stands, in spite of the reduction in the diameter and
the wall thickness of the tube, the pressure increases as a conse-
quence of the reduction in the tension.

The firm “Kocks” (FRRG), engaged in the design and manufacture
of stretch-reducing tube mills, recommends the following formula
for calculating the pressure of the metal on the three rolls of a re-
ducing mill:

P 2mkys (1 — %) V' D,Ar (V.100)

where k; is the resistance to deformation in simple compression
s is the wall thickness of the tube
D, is the roll diameter
¢ is the tension, kg/mm?
Ar is the linear reduction along the radius of the tube.
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To determine the mean specific pressure during the reduction of
tubes we recommend the formula suggested by V. Anisiforov; this,
when the effect of the tension is taken into account, has the fol-
lowing form:

(1 — O 28 ,
pm_kf<1 py )nu —— (V.101)

where ry and r, refer to the mecan radius of the tube before and
after rolling

ns is the coefficient taking account of the effect

of the outer zones on the specilic pressure.

From the theoretical solution of the problem concerning the

strain of a long tube loaded over a comparatively narrow portion

m of its width, and the results of a specially conducted test on tubu-

lar test pieces compressed in a press to determine ng, we obtain the

formula

ny 1 0.9 (’;nV (V.102)

’/m

where [ is the width of the loaded portion of the tube, measured
along its length
dn is the mean diameter of the tube.



VI

Torque Required

to Drive the Rolls

During Longitudinal Rolling

1. BASIC QUANTITIES CONSTITUTING THE LOAD
OF THE DRIVE OF THE ROLLS

The torque on the motor shaft, required to drive the rolls of a
rolling mill, is composed of the four quantities:

where M,,, is

Mf,- is

Ml is

Myor
i

ﬂ’[mot = +]l£ff,. M+ ﬂfdun (V1.1)
the rolling torque, i.c., the torque which is needed
to overcome the resistance to deformation of the
metal being rolled, and to overcome the friction
forces of the mectal along the surface of the rolls
the gear ratio between the rolls and the motor
the torque of the additional friction forces applied to
the motor shaft which arise in the bearings of the
rolls, in the transmission and other parts of the mill
when the metal being rolled passes between the
rolls; it does not include the torque necessary to
drive the mill running idle

the torque of running light, i.e., the torque which
is needed when the mill is running idle
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My, is  the dynamic torque on the motor shalt, required
to overcome the inertial forces which arise during
non-uniform rotation of the rolls.

The first three quantities which form the load of the roll drive
constitute the sum of the static torque and arc unavoidable for
any rolling mill. Of these quantities the rolling torque has the
largest magnitude, and only on rare occasions, in particular, in two-
high mills of the old type for thin strip, can the torque of the addi-
tional friction forces, resulting from large losses in the bearings
of the rolls, be larger than the rolling torque.

Of the quantities which make up the static load the rolling torque
M,,; is the useful load, and the losses due to the friction of the
metal over the roll surface, which are included in it, are inevitable.
On the other hand, the torques M;, and M, constitute a harmful
load due to the imperfection of the components and mechanisms
of the mill.

The ratio of rolling torque, as referred to the motor shalt, to
the total static torque is called the efficiency of the rolling
mill:

:1] . il’[rol T

- (VL.2)
ol My

Depending on the conditions of rolling and the arrangement of the
mill (mainly on the construction of the bearings of the rolls) the
efficiency of the mill can vary within fairly wide limits; on average
N = 0.5 to 0.95.

The dynamic torque occurs only in certain mills with non-uniform
rotation of the rolls: in mills with a flywheel, in mills with a regu-
lated rolling velocity during the pass, including reversible mills. The
magnitude of the dynamic torque is found from the formula

. ( ‘
Magn - I = (VL3)

where 7 is the moment of inertia of the rotating parts of the mill,

referred to the motor shaft

dn . .
oIS the angular acceleration, rpm scc.

Expressing / in terms of the flywheel moment, constituting the
product of the square of diameter of inertia of the rolating parts
and their weight

GD? - 4g]
where g is gravity acceleration,
we obtain the following formula for calculating the dynamic moment:
2
Mdyn _ GD2 dn (VL4)

T35 Tdt
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2. DETERMINATION OF THE ROLLING TORQUE FROM THE VALUE
OF TIIE PRESSURE OF THE METAL ON THE ROLLS

The rolling torque is calculated either from the forces acting
on the rolls or from the experimental data on the energy consump-
tion during rolling. The first method gives more accurate results
when rectangular sections are rolled, that is: sheets, blooms, slabs,
ete.

Using the well-known law concerning the distribution of shear
stresses on the contact surface over the arc ol contact, and neg-
lecting the variation of these stresses over the width of the rolled
strip, i.e., assuming the strain to be two-dimensional, we can express
the torque required to rotate the roll as

« Y
M b\ tride—1> g T2 dq (VIL.5)
Y 0

where b is the mean width of the rolled strip
a is the angle of contacl
y is the angle of neutral section
r is the radius ol the roll.
If we assume that stresses over the arc of contact are constant
(equal to T,) and their direction changes only at ¢ =9, then we
obtain the formula suggested by V. Bayukov:

M =0r?t, (a —2y) (VI.G)

This formula is, however, unsuitable for practical calculations,
since the actual contact shear stresses over the arc of contact undergo
considerable changes. Since the law of distribution of these stresses
over the contact surface is not sufficiently understood, equation
(VIL.5) is not recommended for calculation of M.

The method considered above for calculation of the torque in
terms of the contact shear stresses has a further disadvantage that
the error incurred in the calculation of the angle y gives rise to a
doubled error in the torque.

The most reliable results in determining the torque neceded to
drive the rolls can be obtained il the direction of the forces acting
on the rolls is found by considering the conditions of equilibrium
of the rolled material. Using this method, we can determine the
direction of the resultants of the forces applied to the rolls, and
use the equations derived above (see Chapter TV) to calculate the
torques on the rolls for different rolling conditions.

The angle p in these equations is determined by the point of appli-
cation of the resultant of the pressure of the metal on the rolls,

22.-662
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i.e., mainly by the law of distribution of the normal stresses on the
contact surface, which has received more attention than the law
of distribution of the shear stresses.

Fig. 200. Diagram of the forces acting on a roll (used in deter-
mining the lever arm of the resultant)

Using this method, let us determine the torque for the symmetric
case of rolling (Fig. 200), taking b, the width of the material being

rolled, to be equal to unity:
T r2sin? ¢ dg —

M ==Pa =\ puoisingcosodp+

ot ——2a

T sin? ¢ dp— \ prisingcosqde- -

v

STL—PR e R

—~n

a
-+ g T r2cos? ¢ dg—
Y

T r2cos?q dy (VI.7)

(=1 P

At the same time let us consider the equation of equilibrium of

the rolled material, projecting all forces on to the direction of its
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motion:
a 22

Psin0 = — S D« Sin @ do + Y Tol coS @ dep —

b v

Y
— g Tor cOS @ dg (VL.8)
0

Comparing these equations we notice that for relatively
small angles @ (approximately within the limits of 30°), when
cos ¢ == 0.87 to 1, the last three terms of equation (VI.7) will differ
very little from the right-hand side of equation (VI.8). If, for exam-
ple, in determining the effect of the horizontal forces on the rolling

torque we equate the arc of contact to a chord and thus assume that
a dx
?7

€Os (p = COS rdg = , then instead of the last three terms

COS——
2

. . . . a
in equation (VI.7) we can write Pr sin 0 cos .

Further, in equation (VI.7) we can also neglect the difference of
the second and third terms. As a result of this simplification

M = Pa = \ pr?sin @ cos ¢ dg - Prsin 8 cos = (VI.9)

2

Se—3 R

whence, denoting r sin ¢ = xz, we obtain
!

M= Pa— § pst dz - Prsin 0 cos & (VI.10)
0
We then find the angle B (Fig. 200) from the condition
1
S pxx dz
a:rsin(ﬁ+9)=—0—P—+rsin0cos% (VI.11)

In the simple case of rolling, when 0 = 0, the equation for the
lever arm of the resultant ol the pressure exerted by the metal on
the rolls will be the following:

!
S pxz dz

a:rsinﬁ:%— (VI.12)

g px dz
0



340 TORQULE REQUIRED TO DRIVE THE ROLLS

i.e., the lever arm of the resultant of the pressure exerted by the
metal on the rolls in the simple case of rolling is practically equal
to the distance from theline connecting the centres of the rolls
to the centroid ol the specific pressure diagram plotted on the hori-
zontal projection of the arc of contact.

B

a

is denoted by y; thus
b_

Pl

The ratio of the angles

We call this ratio the lever arm coefficient for the position of the
resultant of the metal pressure on the rolls.

In the simple case of rolling, i.e., when the resultant of the pres-
sure of the metal on the rolls is directed vertically:

P:a~a:l

where a is the lever arm of the pressure of the metal on the rolls
I is the length of arc of contact.
The torque required to rotate both rolls in the simple case of roll-
ing equals
Mo = 2Pl = 2Py ) rAR (VI.13)

Analytically the values of the lever arm coefficient for various
laws of distribution of the contact stresses have been calculated by
A. Korolev, N. Spiridonov and N. Kirilin, when the friction forces
were proportional to the specific pressure, and by R. Sims for constant
friction forces.

In calculating the lever arm coefficient N. Kirilin assumed that
the specific pressure of the metal on the rolls is distributed accord-
ing to Tselikov's equations (I1.34) and (I1.35) for k —= constant.
He represented the results ol this calculation in the form of a
diagram (Fig. 201), where the coefficient ¢ is given as a function
of % for different reductions e ffuh.
to be constant.

It can be seen from this diagram that as the reduction is increased,
and with it 8§, the lever arm coefficient diminishes from 0.5, for
small reductions, to 0.4-0.45, for reductions close to 0.06.

R. Sims calculated the rolling torque, basing it on his formula
(V.99) for the pressure, i.e., he assumed that the friction forces over
the arc of contact are constant and equal to t, A and only change
their direction at the neutral section. In calculating the torque
for both rolls, when b = 1, he recommends the formula

In so doing A is taken

Moo 2rR(2K) [ ,fi— :,}ji) (VI.14)
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where r is the radius of the ideal roll
R is the radius of the deformed roll
i < Aﬁ) is a function depending on R ang At
hl /11 110

To determine the value of this function, which, when equation
(VI.14) is compared with equation (VI.6), equals

f(—R— >_a 2y
Chy T ho

the graph of I'ig. 202 is recommended. On this graph, as in Fig. 201,
k is taken constant over the entire contact surface. In reality & varies
hoth for hot and cold rolling along the arc of contact; accordingly,

¥
13
o4 S = ot
NN - )
~ ‘\\ 02
03
045 N T 04
—
Y a5
‘\\
04 = =04
4 8 12 6 6
A e L . M .
Fig. 201. Variation of the lever arm coefficient 1p == 5P with
l . .
0=np TAL for various reductions &

the coefficient of the lever arm should be determined by considering
the results of experimental investigations.

In this respect the results of the investigation of K. Rokotyan
are of the greatest interest; these were conducted under production
conditions on a blooming mill (Fig. 203), a strip mill (Fig. 204)
and others. According to his investigations the coefficient ol the
lever arm depends on the ratio ! : h,,; as this ratio increases the
coefficient ¢ diminishes during the rolling of blooms from 0.55-0.5
down to 0.35-0.3, whilst during hot rolling of aluminium alloys
it falls from 0.55 to 0.45.

During hot rolling of steel the coefficient of the lever arm was also
investigated in detail by G. Walquist on a 340 laboratory mill.
He rolled test pieces with rectangular cross section 50 mm wide
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and 2.5, 5, 10 and 20 mm thick from 16 different steels, using reduc-
tions 10, to 40% at temperatures of 800, 900, 1,000 and 1,100°C.
One of G. Walquist’s experimental diagrams is given in Fig. 205.
For a low carbon steel (Fig. 205a) the values of the coefficient
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Fig. 202. Variation of f (i , %\ with the reduction M for
Ny ho s h

. . . . - . O
various ratios R : hy; used in determining the rolling torque [rom
the formula (VI.14)

obtained vary from 0.34 to 0.47. A ligher value of the coeffi-
cient is obtained in rolling thicker test pieces (20 mm). The com-
mon difference in the value of the coefficient ¢ depending on varia-
tion in the thickness of the strip is 0.08. When the temperature is
reduced the value of ¢ diminishes a little.

For a high carbon steel (Fig. 205b), and also for the other steels
the character of the diagram is similar, but the variation in the
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coefficient of the lever arm as a function of the above factors is
within wider limits. In particular, for a steel with 1,03% C:

$p=0.30 to 0.49
whilst for a high speed steel with 17.8% W and 1.65% Cr
P =0.28 to 0.56

In the U.S.A. the coelficient  for hot rolling of blanks of square
cross section is taken equal to 0.5, for round secctions it is 0.6, for
closed grooves (.7, for sheets in continuous mills in first stands 0.48 is
used, and in the last 0.39.

In rolling strips which are not too wide, if their width is commen-
surable with the length of the arc of contact, the cocflicient of the
lever arm is strongly affected by spreading, with the result that
the resultant of the pressure exerted by the metal on the rolls ap-
proaches the plane passing through their axes; consequently, ¢ is re-
duced a little.

When rolling is carried out in grooved rolls the calculation of the
lever arm coclficient becomes more difficult owing to the consider-
able effect of the {riction forces which arise hetween the metal and
the side walls of the grooves. In this case more reliable results are
obtained from the experimental data concerning the consumption
of energy during rolling.

The lever arm coelficient for cold rolling was investigated by
E. Rokotyan, A. Korolev, M. Safyan, H. Ford, W. Hessenberg.
R. Sims and others. In these investigations the pressure of the metal
on the rolls and the rolling torque were measured simultancously.
The lever arm coeflicient was [ound from the ratio

Mol
i 2PV rah
for ideal (non-deformed) rolls.

According to the data of M. Safyan the lever arm coeflicient
on the average was 0.19 to 0.24 during the rolling of strips of low
carbon steel.

H. Ford investigated the value ¢ during the rolling of strips of
low carbon steel and high conductivity copper with different ini-
tial thicknesses and with different reductions. Some of the ini-
tial strips were previously anncaled and others upset with diffe-
rent degrees of strain (10, 20, 30, 40 and 50Y%). The mecan values of
the lever arm coefficient ¢ obtained by him for ideal rolls are given
in Table 20.

From the test data of H. Ford it [ollows that in spite of
the different rolling conditions the lever arm coefficient does not
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undergo large changes, and, in particular, when copper is rolled
with reductions of 0.1 to 0.8 per pass, the lever arm coefficient varies
from 0.29 (when & == 0.1) to 0.37 (when ¢ = 0.0).
Table 20
Mecan Valucs of the Lever Arm Coefficient ¢

Thickness Surface >
Material sltl-Lil),lClan‘ (?fmrf)\l?: va{\lll((".agf P
Carbon steel:
(.29 C 2.54 Mirror finish 0.40
dilto 2.54 Dull [inish 0.32
ditto 2.54 Dull finish; no 0.33
lubrication *
0.119% C 1.88 Mirror finish 0.36
0.07% C 1.65 Dittlo 0.35
ITigh conductivity
copper 2 .54 Ditto 0.40
Ditto 1.27 Duli finish 0.40
Ditto 1.9 Ditto 0.32
Ditto 2.54 Dittlo 0.33

* In all other cases the rolls were lubricatxl with vacuum oil 40A

3. THE EFFECT OF THE ELASTIC COMPRESSION OF THE ROLLS AND
THE METAL BEING ROLLED ON THE ROLLING TORQUE

The local elastic compressions which occur in the rolls and the
metal being rolled during cold rolling owing to the high specific
pressure, as has been mentioned previously. have a marked effect on
the contact arca and the pressure of the metal on the rolls.

Let us consider to what extent the rolling torque and the energy
consumption depend on these deformations. For this we shall first
determine the effect of the elastic compression on the position of the
resultant of the pressure exerted by the metal on the rolls, and on its
lever arm relative to the centre of the roll.

During rolling with deformed rolls the resultant of the pressure
of the metal on the rolls is obviously applied in the same way as
during rolling with ideally rigid rolls: close to the middle of the arc
of contact and slightly displaced towards the exit side. But owing
to the fact that the increase of the arc of contact as a result of the
elastic compression of the rolls and the metal being rolled talkes
place rather in the direction of exit of the metal from the rolls than
in the direction of cntry, the point of application of the resultant
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of the pressure is still further displaced towards the direction of
rolling, as the rolls are deformed.

This displacement of the point of application of the resultant of
the metal pressure on the rolls, due to their compression, is shown
in Fig. 206. For rigid rolls the resultant of the pressure of the
metal on the rolls is applied at point B, which is close to the

—~—yrdh =

b — - — l‘, —>~(——xz——>
L AN e ]

Fig. 206. Displacement of the point of application ol the resultant
of the metal pressure on the rolls due to the elastic compression
of the rolls and the rolled metal

middle of the ideal arc of contact A,C,, whilst for deformed rolls
it is applied al point B, which is located close to the centre of the
actual arc of contact A,.Co,.

If we assume (neglecting the elastic deformation of the rolled me-
tal) that the position of the resultant of the pressure for rigid rolls
is determined by the equation

B\Cy= righiCy=rig V AL

where ,;; is the coefficient of the lever arm for rigid rolls.
then for the elastically deformed rolls and the rolled metal

ByCo="YrigA5Co = Prig (T4 + T2)
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Owing to Lhe fact that the segment of the arc of contact C,Cy = z,
the distance from the point B, to the line connecting the centres of
the rolls is

BoCi—nig [ 11— (== 1) 22 | (VI15)
I'rlg -

If the position of the point B, is known, the magnitude of the lever
arm of the resultant of the pressure can be found relalive to the roll
centres for various cases of rolling.

In the simple case of rolling where Lthe resultant of the pressure
of the metal on the rolls is directed vertically, as shown in Fig. 200,
the length of the lever arm [see equation (V.19)] is

a A | VN : 1>1J (VI.16)

Yrig -
Taking into consideralion the elastic deformation of the rolls
and the mectal being rolled,: the actual coefficient of the lever
arm is

a Io . ~
ll‘el——fT:q}r;g-f—f— (\/Il/)

where [ and x» are found from equations (V.19) and (V.22) respeclively.
If we assume tentatively that ,;, = 0.5, then the rolling torque
from equation (VI.16) is

M, =P (Y r\i—1t—ux,) (VI.18)

where P is Lhe overall pressure exerled by (he metal on the rolls.
We express P in terms of the mean specilic pressure p,, and the
contact arca:

P pmb (.1‘2 S l/[m)

where b is the width of the rolled metal.
Substituling this value of P into equation (VI.18) we obtain

M, o1 == pmbrAh (VI.19)

Comparing this equation with equation (VI.13), putling }=-0.5
and expressing P in terms of p, and the contact area, we conclude
that in the case where p,, is mainlained constant, elastic deforma-
tion of the rolls does not aflect the rolling torque.

But in reality, owing to the elastic deformation of the rolls, the
specific pressure increases as a result of the effect of the external
friction, because of the longer arc of contact.

[Elastic deformation of the rolls thus gives rise to an increcase in
the rolling torque, but only as a result of the increased specific pres-
sure. The energy consumption during rolling in this case is also in-
creased due to the increase in the rolling torque and friction losses
in the bearings of the rolls due to the greater pressure.
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4. DETERMINATION OF THE ROLLING TORQUE
FROM THE ENERGY CONSUMPTION

In a number of cases it is more convenient Lo delermine the rolling
torque [from the consumption of energy during rolling, since in this
field more extensive experimental material has been collected than
for Lthe pressure of the metal on the rolls. This method of calculating
the torques required Lo drive the rolls is mostly used when non-rec-
langular metal sections are rolled, where the delermination of the
conlacl area and the pressure ol the metal on the rolls is more com-
plicated than when sheels, strips and rectangular sections in general
are rolled.

The rolling torque can be expressed as a function of the work A
expended during the rolling:

M.y, %: A g']—i‘ (VI.20)
where ¢ is the angle of rotation of the rolls during the passage of
the metal, radians
D is the working diamcter of the rolls
s is the forward slip during rolling
L, is the length of the rolled strip when il emerges from Lhe
rolls.

There are numerous formulas for the calculation of the work ex-
pended during the rolling process, and they were invesligated in
detail by I. Pavlov. The formula of Fink (two expressions), and
the formula of Timme (U.S.S.R.) can be regarded as amongsl the
most important ones.

According Lo the formula of Fink the theorelical amount of work
equals

A:pVI()ge—ZL (VI.21)
1
for rolling without intermediale turnovers, when b, <b,, and
A== /)V]oge% (VI.22)
“0

for rolling with turnover, when b,>> by,

where p is the resistance to deformation calculated from exper-
imental results

V is the volume of the rolled strip

L, and L, are the lengths of the rolled metal before and after the

pass.
According to these formulas Lhe energy consumption is proportion-
al to the displaced volume expressed as the product of the total
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volume of the rolled strip and the natural logarithm of deforma-
tion, i.c.,

Vs =V 1oge 22 or Vg, = Ly

dis == 08¢ N or Vgis=1V log, Ty

Graphically this displaced volume is represented by the shaded
portion in Fig. 207a.

| L
L Ly | v log, -
-QQ \“R(V\hnelg J_
N < (Q)
- Z]‘ i T
< [PE— v(%;—;
< O
< (b
T . L’ - A|

Fig. 207. Volume taken as proportional to energy consumption
during rolling (V is the volume ol the rolled strip):

(a) according to Fink’s formula A = pV lo&*e %; (b) according to Timme's
0

formula 4 = pV log, (%-—-1)
-0

According to the formula of Timme the energy consumption during
rolling is

A=GA (%—-Q (V1.23)

where G is the weight of rolled strip, tons
A is the specific energy consumption, determined from exper-
imental data.

According to this formula the consumption of energy is taken equal
to the volume shown in Fig. 2075.

To compare the results given by the formmulas of Fink and Timme
a diagram is shown in Fig. 208 giving the consumption of energy
per unit weight of the rolled metal as dependent on the reduction
ratio. According to this diagram the results obtained by the (wo
formulas greatly diverge.

Theoretically the formula of Fink should give more correct
results, but in certain cases, for example, as a result of a drop of
the temperature of the metal being reduced during hot rolling. or
when work hardening increases during cold rolling, the formula
of Timme can give results which are closer to the truth.

In view of the difficulty of allowing for all the factors that affect
the energy consumption during the rolling of this component or
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other, the formulas just mentioned give only an approximate idea
of the energy consumption for the individual passes as it depends
on the reduction ratio. '

To obtain more accurale resulls it is necessary to use the data
of experimental investigations, which characlerize nol only (he
total energy consumplion during the rolling of the given component

Al

g 1 2 3 A
Fig. 208. Variation of cnergy consumption with total reduction
ratio during rolling:
1—according to Fink's formula; 2—according to Timme’'s formula

but also characterize the varialion of this consumption with the
deformation of the metal in each pass.

These results of experimental investigations are usually given
in the form of curves expressing the energy consumption per one ton
of the rolled product as dependent on the total reduction ratio, i.e.,
the elongation, or when sheets and strips are rolled, as dependent
on the reduction in the thickness of the rolled material. Data of
this kind are found in handbooks where curves of the specific energy
consumption during rolling are given.

As an example a curve of this type is represented in Fig. 209,
where the energy consumption is plotted as the ordinate and the
clongation as compared to the length of the initial product is plotted
as abscissa (to a logarithmic scale). According to this graph the spe-
cific energy consumption per pass of the metal through the rolls
cquals the difference of the two ordinates a, and a,, which correspond
to the ratio of the length of the rolled strip after and before the pass
to the initial length. Thus, the energy consumption per pass per one
ton amounts to a; — a, hp hr/t.

Then the total quantity of work for the given pass is

A =75 3,600 (a,—a,) G kgm (V1.24)

where G is the weight of the rolled strip in tons.
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In view of the fact that the energy consumption during rolling
is usually measured by the load on the motor, the ahove curves
also include the friction Josses in the mechanisms of the rolling

20
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Fig. 209. Variation of energy consumption with overall elongation
during the rolling of blooms

mill, but do not include the losses due to the idling of the mill.
Accordingly the torque calculated from (his energy consumption is
the sum of the torques M,,; and iM ;..
Using equation (VI.20) we find the torque necessary to rotate
the rolls:
Moy - iM 75 % 3,60(?}([(11—00) GD (1
20

s) kgm

L xpressing the ratio L in terms of the cross-sectional area of the
1
rolled strip and the specific weight. we oblain
Mo -iM =< 135 (ay — ay) YOD (1 +-s) tin (V1.25)

where a, and a, are the specific energy consumption before and
after the pass in question, hp hr/t
v is the specific weight, t/m?
Q is the cross-seclional area of the rolled strip, m?
D is the working diameter of the rolls, m
s is the forward slip.
If the effect of the forward slip is neglected, then for steel with
specific weight 7.8 t/m? we obtain

Mo -iM ;, =1,050 (a; — a) QD tm (VI.26)
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Fig. 213. Variation of energy consumption with I;l—o during the
1

rolling of wide mild steel band in the finishing section of continuous
band mill 1680 (A. Chekmarev et al.):

I1—Xilled steel Ct. 3 (3.0 X 1,400 mm); 2—rimmed steel Ct. 3 (3.0 X
X 1,400 mm); 3—20 rimmed steel (5.0 X 1,400 mm); 4—08 rimmed stecl
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Fig. 216. Variation of the energy consumption with % during the rolling

1
of a wide carbon steel band in the roughing section of continuous band mill
1680. The initial thickness of the slab is 110 to 115 mm (A. Chekmarev et al.):

(1) 08 rimmed; (2) 3 rimmed, 15 rimmed and 25 rimmed
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steel band in the roughing section of contin-

uous band mill 1680. The initial thickness

of the slab is 110 mm (A. Chekmarev et al.):
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Fig. 219. Variation of energy consumption

with A when tubes of steels 1010, 1020 and

1035 are reduced in a two-high reducing

mill. Initial temperature 900°C. Initial di-

mensions of the tube cross section 83 X 5
and 102 X 11.5 mm (M. Sonkin)
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rolling of tubes of carbon steels
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Fig. 221. Variation of energy consumption with % during the
cold rolling of steels MCr. 1 and MCrt. 2 in a 1450 X 450/1120
continuous mill. Rolling velocity in the last stand 4.1 to 4.25 m/s
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When the quantity of work is calculated from the curves, the re-
quired power can be expressed by the following equation:

N =20 g pp (VI.27)
where t is the time of passage of the metal between the rolls,
seconds.

In calculating the energy consumption during rolling from the
curves it is necessary in each case to choose the curve which is the
closest to the conditions of rolling in question (material, dimensions
and the form of section, type of rolling mill, ete.); in cach case an
elongation equal to unity must be ascribed to the section emerging
from the prehecating furnace.

Some curves of specific energy consumption plotted from experi-
mental data are shown in Figs. 210 to 219.

Curves of specific encrgy consumption in rolling sheets and strips
are sometimes constructed as a function of variation of the thick-
ness (Figs. 220 to 223) of the rolied material, since the thickness
greatly affects the energy consumption.

5. COMPARISON OF THE METHODS OF EVALUATING
THE ROLLING TORQUE FROM THE MAGNITUDE OF THE PRESSURE
AND THE ENERGY CONSUMPTION

When sheets, strips and other rectangular sections are rolled, i.e.,
when the contact area is determined by equation (V.13), the rolling
torque can also be expressed in terms of the mean specific pressure:

M yor = 2P 1V rAR = 2p, by AL (V1.28)

To analyze this equation we use it to calculate the energy consump-
tion necessary for the rolling of strips or sheets of length L,. Accord-
ing to equation (VI.20):

LAl
1

L
A:MTOZ(P:]W"”W:2pm¢bm—_»f-—s (V]Qg)

where s is the forward slip.
If we tentatively put ¢y =~ 0.5 in this equalion and neglect the
effect of the forward slip, then

A= 2pmbm[41~—\/" (\/130)

It follows from this equation that the work which is needed
for rolling is approximately equal to Lhe product of the mean
specific pressure and the volume formed by the contact area when
it moves in the direction of rolling over a portion equal to the length
of the rolled strip (Fig. 224).
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It is not difficult to see that this volume is equal to that
shown in Fig. 207b; it follows from this thal equation (VI.30) express-
ing approximately the amount of work determined {from the pressure

Sky
R T R R T T TR

Sk

Ly

Fig. 224, The volume (shown shaded in the figure) formed by the
contact arca moving in the dircction of rolling a length equal to
the leagth of the rolled strip '

of the metal on the rolls, coincides in principle with the formula
of Timme (VI.23), and thus, at first glance, seems to contradict the
formula of Fink (VI.22).

a%éé ) LA

7 RN
Z NN \

- L4_

Fig. 225. Comparison of the volumes Lo which the energy consump-
tion for four passes is taken to be proportional; calculations of
the energy consumption are based on approximate formula (VI.30)

]1!’

(sum of the parallelepipeds J-7V) and the formula 4 =pV log, I
0

The contradiction is only apparent, however. When the required
increase in length of the strip from Z, to L, takes place in several
(say, 4) passes, then the volumes to which the amount of work is
proportional according to equation (VI.30) can be represented
in the form of four parallelepipeds (Fig. 225). The sum of the volumes
of these parallelepipeds, which represents the work performed
during the four passes, does not differ markedly from the dis-
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placed volume V logej’——", to which the work is assumed to be pro-
0

portional, defined by the formula of Fink. This displaced volume
is shown as the dashed curve in Fig. 225.

The correctness of formula (VI.22) can be also confirmed if
we determine theoretically the work required for the plastic defor-
malion alone, neglecting the inevitable friction losses of metal
along the surfaces of the rolls.

Let us isolate in the deformation zone an element from the metal
contained between two vertical plancs so that the length of the arc

&8 o=
&
\ /_%
\ ar
1 —
K s
Ly L
] 2B
7 \

Fig. 226. Determination of the encrgy consumption during rolling

of contact of this element will be equal to rdg. When this element
is displaced along the arc of contact by the amount 4B, and
when it is reduced in the radial direction by the distance dr
at top and bottom, the work for & = 1 can be expressed as (Fig. 226):

dA =2prdg dr (V1.31)

From the condition that the volume AV of this element remains
constant when it passes through the rolls it follows that
AV =h,rdepcos ¢

Substituting the value of rd ¢ obtained from this equation into equa-
tion (VI.31) and denoting

dhy

dr=cos ¢

2
we find that
d4 = pAv L
X
or

A = pAV log, Z_(; (V1.32)
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or, when spreading is absent,

A= pAV log, 7 (VL.33)
~0
From equations (VI.32) and (VI.29) it follows that
LA Y
2Pm b 11 L = pLiuybylog, ]z_o
1
if we substitute p,, = p, so that
2y AL hg
o5 Ty 108,
From this
N i
P =0.5(1-+ s)A—;Lloge% (VI.34)

If we neglect the effect of forward slip and if loge;i—‘) is expanded

in a series and only the ﬁrst term of this series is used, i.e.,

Al Al
log, 2 = loge (14 4 ) ~ 4

hl
then we obtain ¢ =~ 0.5.
From these results it follows that the formula

A = pV log, —Z%

does not contradict formulas (VI.29) and (VI.30); if in calculal-
ing Lhe amount of work from the pressure of the metal on the rolls
we take into consideration the forward slip and bear in mind that
during the simple rolling process the lever arm coefllicient is a little
less than 0.5, then the results obtained from formulas (VI.22) and
(VI.29) must be identical. At the same time formula (VI.30) may be

considered as a simplification of formula (VI.22), when log, ;ll—“

is expanded in a scries and only the first term of this series is used,
the effect of the forward slip is neglected, and it is assumed that
P == 0.0.

As a consequence of what has just been said it is thought advisable
to calculate, on the basis of formula (VI.33), the power required
during rolling from the equation

. pmv1Q .
N = et loge b kW (VL.35)
where p, is the mean specific pressure, kg/mm?
v, is the exit velocity of the metal, m/s
Q, is the cross-sectional area of the metal emerging from the
rolls, mm?2.
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If this formula, with the rating expressed in horse power, is
compared with equation (VI.27), we obtain the following relation-
ship (recommended by L. Rokotyan) between the mean specific
pressure and the specific energy consumption during rolling:

an;Z—;Qi loge}\’: 3,600 (‘zl—ao) G hp

Bearing in mind that
G _ Qiryy

t 106

where Q, is the cross-sectional area of the strip as il emerges from
the rolls, mm?
vy is the exit velocity of the metal, m/s
y is the specific weight of the metal, t/m3,
we obtain
Pm=0.2Ty —{;2)—0_—';»9 kg/mm?
where a, — a, is Lhe specilic energy consumption for the given pass,
determined from the curves of Figs. 210 1o 223,
but with the energy expended in friction in the
mechanisms of the rolling mill subtracted, hp hr/t.

6. THE EFFECT OF TENSION OR THRUST
ON THE ENERGY CONSUMPTION AND THE ROLLING TORQUE

In order to estahlish the eflect of tension or thrust on the
energy consumption during plastic deformation, we shall consider
the simplest case of deformation when two-dimensional upsetting
of a prism takes place between two parallel planes, provided
that external forces act on the sides of this prism.

B
.. ::H///é/z/zz/_ﬁ . }L:__’; <
% T g/"x B
=— =
. A /r . G 7 i Z Z
g 7

Fig. 227, Compression of a prism with external forces applied to its
side surfaces
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)

When the prism is compressed by the amount dh (Fig. 227) the
work is equal to the sum of two quantities:

dA = ppF,dh -t 20 F . 5 V1.36)
Yy 2 (

where  p. is the mean specific pressure
0, is the stress arising on the side surfaces of the prism
F. and F, are the areas where the stresses p, and o, arec applied
db is the spreading.

Denoting the volume of the prism by V, and taking its dimension
in the direction perpendicular to the plane of the paper equal to
unity, we obtain

I 5 |
Fyegp Fomgp

After substituting the values of F, and F, into equation (VI.36)

we have

dd=p,V I 4o,V 2 (VL.37)
Since the strain is
dh  db
T b
equation (VI.37) assumes the following form:
dA = (pm-+05) V - (V1.38)

The specific pressure on the contact surfaces at a distance z from
the edge of the prism is determined from the equation of equilibrium

hdoy, =21, dzx
and the equation of plasticity
Pr=2k—0,

For constant friction forces on the contact surfaces, say, equal to
k, the specific pressure is given by

2k
dp, = 5 dx
or
2k
Px=(2k—0) + 52 (VL.39)
From this the mean specific pressure is

P = 2k (1+4_‘;1) e (VL.40)
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The first term of the right-hand side of this equation represents
the mean specific pressure p;, when the external stress o, on the side
surfaces is absent:

Pm=Ppm—0x
Substituting this value of p, into equation (VI.38) we obtain
dh

dA = pmV log. -~

Hence we may conclude that for obtaining the same deformalion
the total energy consumption will not depend on the nature of
the additional external forces (tension or compression) applied to
the side surfaces. Thus we may assume that in rolling with tension or
thrust the total energy consumptlion varies only as a result of a reduc-
tion in the friction forces on the contact surfaces.

In practice during cold rolling of metal in rolls with a large
D : hyratio, the energy consumption is slightly reduced owing to
a reduction in the local elastic deformation of the rolls, and,
consequently, in Lhe effect of the contact friction forces as a result of
tension. In reversing mills with asmall D : &y ratio the energy con-
sumption obviously may not diminish with increasing tension owing
to the increased losses during its recovery at the driven coiler drum.

Taking into consideration the above conclusions, let us calculate
the rolling torque. It is necessary to bear in mind that il the torque
is determined from equation (VI.13), difficulties arise in calculating
the lever arm coefficient ¢ which is greatly affected by the tension
or thrust.

Assuming that the power consumed in rolling does not vary when
tension is applied, we can write, using equation (VI.35):

N = pi0sQ110ge k= Moy 1o - — 00000+ 0,00, kgm/s - (VIA1)

From this we obtain the formula for determining M,,;, i.e., the
torque required to drive both rolls in order to overcome the re-
sistance to deformation of the metal between the rolls when rolling
with tension:

Mrol - (p;n 10ge A ‘“‘F Go— 01) Q%D (1 —%— S) ]‘gm (VI42)

where pm is the mean specific pressure without the effect of
the tension taken into account, kg/mm?
A is the reduction ratio
0, and o, are the tensile stresses, kg/mm?
Q, is the cross-sectional area of the strip as it emerges
from the rolls, mm?
D is the working diameter of the rolls, m
s is the forward slip.
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When metal is rolled with thrust the sign in fronl of o, and o,
must be changed accordingly.

If the mean specific pressure p,—with the effect of tension
taken into account—is known, then according to equation (V.70),
when approximate calculations arc performed, the following substi-

tution i ol o
Pm =~ pm-+ L P ! (\7143)

must be made in formula (VI.42).

7. DETERMINATION OF THE TORQUE
O THE ADDITIONAL FRICTION FORCES

By the torque of additional friction forces we understand the
torque required to overcome the friction forces which arise in the
bearings of the rolls and in the drive mechanism of the mill when
the metal being rolled passes through the rolls; however, the value
of this torque does not contain the torque required to drive the rolls
when the mill is running idle.

The major part of the torque of additional friction forces is
the torque of the {friction forces in the bearings of the rolls. The
value of this torque for both rolls is

My = Pdy, (VI.4%)

where P is the load on the bearings (in the case of the non-overhung
arrangement of the rolls this load equals the pressure
of the rolled metal on the rolls except in six-roll and
multi-roll mills)
d is the journal diameter
py is the coefficient of friction in the bearings of the rolls.
The construction of the bearings and the working conditions affect
the value of the coefficient of friction, which may be taken as given
in the table below.

, Cocfficient of
Type of bearing friction py

Sliding:
metallic bushes:

hot rolling 0.07 to 0.1

cold rolling 0.05 to 0.07

plastic bushes 0.01 to 0.03
Fluid friction 0.003
Rolling 0.003

The second component of the torque of additional friction forces
is the friction forces in the drive mechanism of the mill, i.e., in gear
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stand, in the reduction gear, etc. This quantity depends on the efficien-
cy of the transmission and is usually determined from the equation

M= (%—'1) Mroit My (VI.45)

where M, is the torque of the losses in the transmission,
referred to the motor shaft
n is the efficiency of the transmission {rom the motor
to the rolls
i is the gear ratio of this transmission
M,,; and M;,, are the rolling torque and the torque of the friction
forces in the bearings of the rolls, referred to the
latter.

The efficiency of a single stage gear drive is usually taken equal
to 0.90 to 0.98, that of a belt drive is taken to be 0.85 to 0.9 and
that of a rope drive equal to 0.85.

In four-high mills and in other mills provided with support rolls,
a further component of the torque of the additional friction forces
is present: this is provided by the rolling friction losses of the working
rolls along the support rolls. But because of their smallness these
losses are usually not taken into account in calculations.

Thus the total torque of the additional friction forces, referred to
the motor shaft, is

My =2, (V1.46)
or

M == Mint ‘”’” 1 & : —1> Mrol (VLA4T)

If the mill is provided with idle rolls, then the first term of this
equation must be multiplied by the gear ratio between the working
and support rolls. Then

Mjr — J‘[rol

Mirg Dw __1)

: 48
i Dgyp n / (VI * )

where D, and Dy,, are the diameters of the working and support
rolls respectively.

8. IDLE LOAD

The idling torque, i.e., the torque required to drive the
main line of a rolling mill in idle periods, is calculated for large mills
from the weight of the rotating components and the radii of the fric-
tion circles of their bearings.
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Let us calculate this Lorque in a general form for a case where in
the main line of the rolling mill a number of components (roils,
shafts, couplings, gears, flywheel, ctc.) are of different weight, and
rotate with different velocities in bearings with journals of dilferent
diameters and different coefficients  of friction. The idling
terque is obviously equal 1o the sum of the torques, referred to the
motor shaft, which are required to drive each component, i.c.,

M, )M, (V1.49)

where A, is the torque required to drive a particular component,
referred 1o the motor shaft.
lixpressing the quantity M, in terms of the force and the radius
of the friction circle of the bearings of the given component. we
obtain

M,L:(’"Z”—i';dn (VI.50)
where G, is the weight of the given component (by this the load
on the bearings is understood)
pn is the coefficient of friction in the bearings
d, is the journal diameter
in is lhe gear ratio between the motor and (he componenlt
in question.
Substituting this value of M, into cquation (VI.49) we oblain

M, X Lt (VL.51)

The coeflicient of [riction must be chosen, for the particular type
ol bearing, from Lhe data given above; in so doing a possible seizure
of the bushes must be considered.

When the idling torque is calculated for thin strip cold-rolling mills
and certain other mills the initial pressure on therolls still hasto be
considered. In this case the load on the bearings of the rolls can be very
considerable and will somelimes nearly approach the pressure of the
melal on the rolls during rolling. The additional torque of the {ric-
tion forces so produced can obviously be calculated {rom equation
(VI.44), taking the pressure P equal to the force between the rolls.
Then the torque ol the additional friction forces should correspond-
ingly be reduced during the working run.

If the mill is provided with a flywheel, the value of the idling
lorque musl he supplemented by the torque dissipated in overcoming
the friction of this flywheel against the air. To calculate this ilem of
power consumption, the following empirical formula is often used:

N pESD(L4-5b) 107 hp (VI.O2)
24662
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where v is the peripheral velocity of the flywheel rim, m.''s
D is the oulside diameter of the flywheel, m
b is the width of the rim, m.

9. STATIC LOAD DIAGRAMS

To determine the power of the drive, and Lo calculale the strength
of the mill, the magnitude of the load must be supplemented with
the knowledge of the graph of the load variation wilh time. This
graph is known as the load diagram.

The preliminary calculations leading to Lhe construction of this
diagram first involve the delermination of the stalic load on lhe
drive over the entire rolling ceycle of the strip, and also the deler-
mination of lhe duration of Lhe passes and (he necessary inlermis-
sions belween them.

The static load, as was mentioned above, can be calculated from
the equation

Mg, =- IOl—i'Mfr‘}_Ml

where ”i , M., M, denote the rolling torque, the torque of the
additional friction forces, and Lhe
idling torque, referred Lo (he motor
shall and given by equations (VI.13).
(VI.25), (VL.A7) and (VI.51).
The duration ¢ of the pass is found from (he ratio

L
Uy

where L is the lenglh of the rolled strip and
vy is the mean exit velocily of the metal.

The length of idle periods between the passes is calculaled or as-
sumed dependent on the length of the operations which must be car-
ried out when the strip to be rolled is fed to the rolls, such as: feed
along the roller conveyor, turnover, transfer into another groove or
into another stand, drop or lift of the top roll, reversal of (he
mill, ete.

The load diagram is constructed for the entire cycle of a given
strip: from Lhe instant it enters the rolls to ils deparlure in the last
pass and the feed of the next strip. After each cyele, whose form de-
termines the rhythm of rolling, the load diagram is represented afresh.

The most characteristic static load diagrams of the drive for dif-
ferent rolling mills are shown in Fig. 228. Fig. 228a and b shows the
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Fig. 228. Static load diagrams for various rolling mills (¢ is the rhythm of
rolling): :
(a) continuous mills with individual drives and other mills which roll a single strip
in one pass; (b) single-stand mills and other mills which roll a single strip by repcated
passes ([ive shown); (c) simultancous rolling of two or more strips by repeated passes
(five shown); (d) conlinuous mills with group drives (five stands) during the simulta-
neous rolling of a single strip; (¢) as for d, but with the intermission between the [ceds
of two strips less than the time required by the strip to pass between the stands
of the mj]l “i is the length of an intermission)

24*
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load diagrams of the drive, where the height of the rectangles corre-
sponds to asingle pass, whilst the height of the rectangles of the load
diagrams shown in Fig. 228¢, d and e corresponds o two or more
passes. In this case the load diagram is constructed by adding one sel
of rectangle Lo another. The displacement of these rectangles
{I"ig. 228d) along the abscissa depends on the time of the passage of
the rolled strip between the stands of the continuous mill and the
duralion of Ltheidle periods. Often, in order to obtain a greater capac-
ity ol the mill, the intermissions are made less than the time neces-
sary for the strip to pass from one stand into another; the ordinate
of the load diagram will then be constant, with small gaps in it
(Fig. 228e).

10. THE EFFECT OF A FLYWHEEL LOAD ON THE DRIVE

To equalize the load on the drive of a rolling mill during the
time the rolled metal passes through the rolls and during the idle
period, flywheels are used in certain cases.

n
%"\\
)
-
//
< g /
< /
Moo M

nom

Fig. 229. The relation between the speed n and the load 3/ of an
asynchronous electric motor

According to equation (VI.4), the load on the drive shaft, with
the cffect of the flywheel taken into account, is

GD? d -
Mo — Mo+ S0 41 (VL.33)

where Mg, is the torque on the motor shaft due to the static load
GD? is the dynamic moment of the flywheel and other rotat-
ing parts, referred to the motor shaft
dn

i is the acceleration of the motor, rpm sec.
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The motor load diminishes only when its speed is reduced; the
. 1 . . .
acceleratlon% becomes negative and. the second term in cquation

(VI.53), representing the dynamic moment, will have a minus sign.

To solve equation (VI.53) it is necessary to find the relationship
between the number of revolutions per minute and the torque or the
time. In most cases when a drive with a flywheel is to be calculated,
and when an asynchronous electric motor provides the motive power,
it is assumed that the speed of the motor is reduced proportionally
to the increase in load (Fig. 229), i.e.,

n -a—bM,, (VL.O4)

The constant values of a and b are indicated on the motor
nameplate. Denoting the number of revolutions of the motor at zero
load by n, (synchronous speed) and that at a Joad equal to the nomi-
nal torque M,,m by n,om, we obtain

nag—n
a--ny b— o _Tnom
]Wnom

Then equation (VI.54) can be written as:

— noo_mﬂa_) (VI.5H5)

ng ‘Wnom

The ratio z‘ﬁnn—"“"‘is called the nominal slip of the motor; it is
0
denoted by s,m:

ng—nNnom
9

Sn om =

This quantity depends on the characteristics of the electric motor

and is usually 3 to 10%.
Let us find from equation (VI.53) the derivative of the specd:

dn __ Snom n dMp,

dr Mpom 0 dt

Substituting the value of %‘n— into equation (VI.53), we obtain

GD2 spom n dMmo

Mo = Mot — 575 Mpom 0 " dt

and after a transposition

dMm, _ 375M pom
Mpo—Mgy GD2nysp0m
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Denoting the constant quantity by

GD2ngspom cp
m - (VIO())

we obtain the basic differential equation for a drive with a flywheel

(].'11,”0 _ 1 . -
T = — o dt (VL.57)

The value of 7" depends on the dimensions of the flywheel and on
the characteristics of the motor; it is called the inertial constant
of the motor and flywheel system. This value is measured in time
units; it is the product of the nominal slip and the startup
time of the flywheel from rest to the speed of n revolutions per
minute, provided that during the entire startup time the motor

develops the nominal torque M,,,,, and no static load is applied.
. . . . D2 .
It is not difficult to see this, since 575 Mo is a momentum and

T
ﬂ[nom .

nom
After integrating equation (VI.57) we obtain

is the impulse of a force.

log

— L
e (Mpo— M) _T,i_(j
The constant C is found from the initial conditions, if we assume
that for ¢t = 0 m

Mmo::MO

We then obtain the equation of Gache:

f

Mo~ My —(My—Mee T (VI.58)

This equation shows that the drive torque varies as an expo-
nential curve, the asymptote of which is a line parallel to the
time axis and passing at a distance from it equal to M
(Fig. 230). At the same time, the greater the inertial constant of the
motor and flywheel system, i.e., the dynamic torque of the flywheel
or the slip of the motor, the smaller is the slope of the curve in ques-
tion (see the dotted line in Fig. 231).

For the idle period of the drive, when Mg - M, and M, > M,,
equation (VI.58) assumes the following form:

14

M= M - (My—M)e T (VI.59)



DURING LONGITUDINAL ROLLING 375

Using formulas (VI.58) and (VI.59) we can construct the load
diagram for all passes and idle periods. For a large number of passes
the plotting of this diagram by analytical means is time-consuming;
hence it is advisable lo construct it by means of a stencil.

The stencil is drawn on a thick paper to the scale of the load dia-
eram (Fig. 232) from the equation

M O My(1—e¢ 1) (VI.60)

where A is the static torque, assumed to be approximalely equal
to the maximum value of M of the load diagram.

M M

o,
t t
Fig. 230, Time variation of a load on a Fig. 231. Time variation
drive with a flywheel of a load on a drive for

different values of the iner-
lial constant of the motor-
flvwheel system

The value of the time in constructing the stencil is taken from
l 0 to t =~ 4T, after which the curve merges with the asymptote.

I constructing the curves by a stencil the stencil is laid on Lhe
slatic load diagram in such a way that it touches the point where
M =: M,, and so that its asymptote coincides with the straight line
parallel to the time axis and is located from it al a distance equal
to M. Within the limits of a given pass or idle period, the slencil
is used to trace the corresponding part of the load diagram (Fig. 233).

We shall prove that it is possible to use one slencil to construcl
the exponential load curves of the drive for any value of M.

The equation of the stencil curve passing throuch the origin of the
coordinates M’ and ¢’ (Fig. 232) is

!

M My (l—e 1) (VI.G1)

where M. is the maximum value of the st-tic torque, assumed
in constructing the stencil.
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Fig. 232 Construction of stencil curve

My

Mg

) Pr—
B (8) t
Fig. 233. Method ol constructing the load diagram using a stencil

in the case of a drive with a flywheel:

() Mgy = M, 0 () Mg < M

no’ mao
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.

We find the equation of this curve in M-/ coordinates of the given
load diagram, where the curve passes through the point where
t U and M = M, and asymplotically approaches the straight

!

M M
N
N \ 3
X 3 ¥
N \\\ "
a4t [A t’
-

Fig. 234. Position ol the stencil in M-t coordinates ol the load
diagram

line parallel 1o the abscissa and located from il at a distance equal
to My (Fig. 234). To this end the coordinates of the stencil are
expressed in terms of the coordinates of the load diagram:

M’ =M (M} — M)
1t At

which arc then substituted into equation (VI.61):

t-+Al

ML (Mi—My)=My(1—e T)
or
At t

M—My= —Mye Te T (VL.62)

The value of At in this equation is found from the condition that
fort =0 and M = M,
At

Mg—M, My T
After substituting this value into equation (VI.62) we have

t
1M‘4Mst_(Mst_M0)e T

i.e., we obtain the curve which was to be constructed.
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i11. LOAD ON THE DRIVE OF REVERSING MILLS

In reversing mills the gripping of the metal being rolled takes
place at a reduced velocily; afterwards the velocity of the rolls
increases, and at the end of the pass il is reduced again (Fig. 235).
Thus the time needed for the metal to pass through the rolls is made
up of three periods: acceleration, steady state velocity and decele-

ration.
ni 7
ﬁ/

(a)

— /75
= Tez’

ste z5‘151'

S
¥

g

i

!

> A tbr

(6)

t
F— M.,

Mste
e Mb/‘_‘-

‘T 1 ' | t

Fig. 235. Rolling velocity (a) and the load on the drive (b) during
a pass with reversals
If we denote the acceleration of the motor, expressed in revolu-
tions per minute per second, by &,, during the running up aud by
gy, during the hraking, then the driving torque during each of these
periods is:
G2

Mpas My 50 b (VI.63)
during the running up,
Mg, M, (V1.64)
al steady state velocity, and
My Me—51, (VL63)

during the braking.

Here GD? denotes the dynamic torque of the rotating parts of the
mill and the rotor of the electric motor, referred to the shaft of the
latter.

For shunt-wound electric motors—which, as a rule, are used for
the drive of reversing rolling mills—the values of €, and €, are
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usually taken as constant. Then the load diagram during the pass
will be made up of three rectangles (Fig. 235b). During the inter-
mission period the load on the drive will also be different:
during the running up
G2

;l/[,' ri A{] . :’—:))7?)* 8”" (\71(36)
during the braking o
My M —52 e, (VLGT)

The values of the accelerations ¢,, and g, depend on the charac-
teristics of the electric motor and its control arrangements. FFor large
rolling mills, and, in particular, for blooming mills, the accclera-
tions arc usually taken as constant: g, ~ 30 to 80 rpm sec and
gy, =~ 60 to 120 rpm scc.

To increase the capacity of the mill there is a tendency Lo increase
thesc accelerations still further. In modern blooming mills they some-
times approach 100 rpm sec during the running up and 160 rpm sec
during the braking.

Let us determine the duration of the above-mentioned load peri-
ods. If the times of running up. steady state velocity and braking
are denoted by t.,, ty. and t,,, then the total time of the pass is

l-- lru"?" lsto - ’br

Designating the speed of the rolls during the gripping by nyg,,
that at the steady state velocity by ng., and that at the exit
by nex, we find ¢, and ¢,:

Neto-—Ngp Rt .
) ste X
{ru - and fy, - S
Eru €hr

The length of the period of steady state velocity depends on
the length L of the strip bheing rolled. Since the avea of the shaded
portion of the diagram shown in Fig. 235a corresponds to the length
of the strip bheing rolled. we can set up the equation

aD /Ngr o Nste . L Ngte—-MNex ’
- "0— T — /rl '3"1rtc{s!rf':"‘L(’-"__(’ilbr \"
60\ 2 J

where D is the working diameter of the rolls.
Hence the length of the period at steady stale velocily is
¢ 1 Ngp-i-N i ~
607 1 ar i Nste T T for \ (VL6S)

aDng.  Mete 2 S 2

lste ==

The runniug up and braking times during idling are

Ny
yr Nex
liru I-— and Ii br ’7‘_;;}_
“ri r



VII

Forces During

Die Rolling

1. DETERMINING THE CONTACT SURFACES
DURING DIE ROLLING

In certain tube rolling mills (for example, Pilger, rockright, and
the roller mills of the VNIIMETMASH system), in planetary mills,
as well as in forging and rolling mills which serve for shaping various
components, the reduction process is not performed continuously
over the entire length of the component being rolled, but periodically.
by working its separate portions.

In this method of rolling the metal is compressed in a groove which
is shaped in such a way that its dimensions arc gradually reduced
by the motion of the rolls during the working period. The dimen-
sions of the maximum groove, called the bite, are made slightly
larger than the cross-sectional dimensions of the blank, whilst the
dimensions of the minimum groove correspond to the dimensions
of the rolled component.

Since in this method the metal is rolled in grooves of variable
cross section, the contact area, and, consequently, the pressure on
the rolls during the given pass is not held the same as in the usual
method of rolling in grooves of constant cross section, but is varied
with the variation of the cross sections of the groove and the blank
to be rolled.
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During the period when the metal is fed to the rolls the pressure
on the rolls is obviously zero, since the dimensions of the bite receiv-
ing the blank are slightly larger than the dimensions of the initial
cross section of this blank. During the subsequent motion of the rolls
as a consequence of the reduction in the dimensions of the groove,
the metal comes into contact wilh the rolls, and a pressure arises
the value of which, depending on the subsequent roll pressure,
will vary with the reduction.

[ follows from this outline of die rolling that the essential
feature in calculating the pressure of the metal in this method of
rolling is the determination of the contact area. The magnitude of
the reduction or reduction ratio during the entire working motion
of the rolls must be known for this determination as well as the
dimensions of the grooves.

Let us suppose that the grooves of the rolls for which the reduction
or reduction ratio is Lo be determined are made so that the cross-
sectional area of the blank being rolled varies as a certain curve AB
(Fig. 236). The cross-sectional area of the blank to be rolled is plotted
as the ordinate, whilst the motion of the rolls over which the cross
section varies is plotted as the abscissa. This motion of the rolls
obviously takes place with a certain mean diameter (varying as
the rolls rotate) for which the peripheral velocily is equal to
the velocity of the blank being rolled. We shall denote the area
of the initial cross section of the blank by F; and that of the final
one by F,.

In order to determine the reduction ratio during the rolling of
metal at a certain section of the groove, located, say, at a distance
from the vertical axis, it is necessary to find the size of the
cross scction of the blank entering the given section of the groove.

When the blank is fed by an amount s, the curve A B characterizing
the variation of the cross-sectional area of the blank is obviously
displaced relative to the grooves of the rolls by the magnitude of
this feed, and thus assumes the position A,8;. The section CD of
the blank is also correspondingly displaced by the amount of feed
and assumes the position C,D;.

During the subsequent motion of the rolls {rom point A to point (',
after this feed, the blank is reduced over the section z, and owing
to this reduction the volume of the metal hounded by the curves AC
and A4 ,F, is displaced towards the right. As a result of the displace-
ment of the metal the length of the blank over the section z is corre-
spondingly increased; the section €D, is displaced towards the right
by a certain amounl As, taking up the position C,D,. Hence it
follows that the variation of the cross-sectional area ol the blank on
the portion not yet rolled will no longer be given by the curve £,8,
but by the curve H,B,, displaced relative to AB in the direction
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of the horizontal axis by the amount
Ax=s+ As (VIL.1)

Thus at the given instant, i.e., after the reduction of the blank
over the portion AC, the variation of the cross-sectional area of the
blank is given by the broken curve ACH.f..

Fi

st

. 236. Variation of the cross-sectional area of the blank teing
rolled with the motion of the rolls

It should be noted that the section £,D of the blank does not enter
the given section CD of the groove; a considerably larger section
does, i.e., the section H,D (the displaced section HG of the blank).

Consequently, the reduction ratio in the groove section CD is
CHyD P

_ (VII.2)

he =p Fy

Sometimes it is assumed that the reduction ratio equals the ratio
of the area E,D to the area CD, i.e., only the feed is taken into con-
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sideration without allowing for the effect of the additional displace-
ment of the rolled blank during the time when it is reduced. In view
of the fact that the valuc of the displacement As increases with the
molion of the rolls, and that at the end of the working motion of the
rolls (the scetion ;) it commonly exceeds several times the feed
value (usually about 5 to 10 times), the error under this assump-
tion becomes very counsiderable.

To calculate the reduction ralio from equation (V11.2) it is clearly
necessary to find the value of F. .. This can be determined
from the condition that the volume of the rolled blank remains
constant.

The volume of the metal, 17, et into the rolls in a single feed,
can be expressed, on a cerlain scale, as the arca of the rectangle
AAKO, i.c.,

Vo Fos (VIL3)

From the diagram shown in Fig. 236 it follows that the volume
V, is equivalent to the sum of the volumes V, and V,, whence

Fos V-V, (VIL4)

where V, and V, denote the volumes of the metal bounded by
AAEC and E,C DD,

When the blank is reduced by the rolls over the section AC the
volume of the metal, as was mentioned above, is displaced. The vol-
ume I H,C,D,.D C,, denoted by V3, must equal this volume. Then,
according to equation (VII.4),

1"08 B Vg*%- V3 (VIIS)

i.e., the volume of the metal bounded by H,C,D,D equals the volume
of the metal entering the rolls at a single feed. As has been men-
tioned above, HoC.D,D is in fact HCDG displaced during rolling
from point A to point C. Consequently, the volume of the metal
bounded by HCDG musl also be equal to the volume entering the
rolls in a single feed (see Fig. 236):

X
>

Fes | Fudo (VIL6)

x—Av

If the functional relationship F, = f (z) between the variation
of the cross-sectional area of the blank and the length of the defor-
mation region is known, then the value Az can be determined from
equation (VIL.6). Substituting then the value z — Az of the abscissa
into the given expression /. = f(z), we find the reduction ratio
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from the equation

Foo f(x— \2)

A, = —X-A% VIIL.7

* Iy f(z) ( )

When Lhe variation of the cross-sectional arca ol the blank along

the deformation region is given by a curve without an analytical

expression, the area HCDG is cquated to a trapeziwn. Then the
volume Fys can be expressed thus:

Fos - Lxcas Py, (VIL8)

Subsequently drawing the tangent to the curve A/ (a little to the
left of the point C) and denoting the angle of inclination of this tan-
gent to the horizontal axis by @, we obtain

Folax— Fo-- Az lan q (VI1.9)

After excluding the value Az from equations (VIL.8) and
(VIL.9)

Foav=V} "F.  2Fstan q

Dividing both sides of this equation by F, [sec equation (V1I.2)]
we find the formula for the reduction ratio in the diiferent sections

of the groove:
A — l/l el P (VII.10)

Denoting the constant for the given section by

) P .

== “_;jﬂ (VIL11)
we obtain a relatively simple expression for delermining the reduc-
tion ratio in terms of the feed

Ao V1 as (V1112

In practical calculations when it is required to determine the
contact surface, and, consequently, the reduction ratio in dilferent
sections of the groove for the given dimensions of the latter, the
working zone of the groove must be divided into a number ol sections
and the cross-sectional area calculated for cach section of the blank.
The graph giving the variation of the cross section along the length
of the deformation zone (see Fig. 236) is afterwards plotted from thes:
data. Hence we can determine the reduction ratio in any section
of the groove over the region AR, using formulas (VII.10) and
(V11.12).
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After the determination of the reduction ratio the contact area
and the pressure of the metal on the rolls are calculated in the same
way as for the usual longitudinal rolling.

2. DETERMINATION OF THE REDUCTION RATIO
AT THE END OF THE WORKING MOTION OF THE ROLLS

From the analysis of the die rolling process given above it
follows that when the rolls reach the point B and the blank to be
volled has already been reduced over the basic section Iy, where the

F.T
A
|
i
.
|
1 Hy
D V.
] f//////,
; Vg | \
\ L LN\
J

Fig. 237. Diagram showing the relation F, = [ (z) (used tlo
determine the reduction ratio at the end of the working cycle of the
rolls)

cross-sectional area of the grooves decreases with the motion of the
rolls, a considerable portion of the metal not yet reduced still remains
in front of the rolls. This portion of the metal is obviously com-
pressed by the next segment of the roll, having the groove of constant
cross section. The reduction ratio during the subsequent motion of
the rolls will gradually decrease, and, when the rolls reach the
point B, (Fig. 237), where BB; =1, = %s, will become equal

3
to unity.

To determine the reduction ratio at the end of the working motion
of the rolls, i.e., over the section [,, it is necessary to use a somewhat
25-662
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different method of calculation, since equations (VII.10) and (VII.12)
are applicable for calculating the reduction ratio only over the
section I,. Let us suppose that the blank has been rolled over the
section z (see Fig. 237) and it is required to determine the reduc-
tion ratio at the section DC of the groove.

The reduction ratio at this section of the groove is given by

HyD ]"11—-\-\’

hs =5 =" (VIL.13)

The quantity F;,_ax is found from the condition that the volume
of the rolled blank remains constant. From the diagram (Fig. 237)
it follows that the volume V, of the metal supplied to the rolls in
a single feed must be equal to the volume (V, -+~ V3), i.e.,

VoV, Vs (VIL.14)

where V, and V; denote the volumes of the metal bounded by
BCDE and H.B,D,D.

Owing to the fact that the line H,B, corresponds to the portion
HB of the curve AB, the equation for the volume V; can be written
in the following form:

I1
vV, - S F.dzx (VIL.15)

I1—Ax

Substituting the corresponding values of the volumes into equa-
tion (VII.14) we obtain
I
Fos - F(z—1))-- x F.dx (VIL.16)

l1—Ax

If the functional relationship between the variation of the cross,
sectional area of the metal and the motion of the rolls is known, then-
using this equation, we can determine Azr. Knowing Az from the
given relation F, == f (z), we can subsequently find the reduction
ratio from equation (VIL.7).

In those cases where the variation of the cross-sectional arca due
to the motion of the rolls is in the form of a curve having no ana-
lytical expression, the same method can be used to calculate F,_ \,
as for the section [;.

Equating f{,B,D,D to a trapezium, equation (VII.16) can be
written in the following form:

Fops=F, (x—li)+MAx (VIL.17)

2
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The quantity Az is determined from the equation
Fri_ax=F;+Azrtang (VII.18)

where @ is the angle of inclination of the tangent drawn to the
curve AB slightly to the left of the point B.
Solving these two equations simultaneously we find

Fri—ax= V Fro|los— I (x—1)] 2tan g

Substituting this value of F;,_s. into equation (VII.13) we obtain
the formula for determining the reduction ratio over the section [.:

h—1/1 i 2t B 5 tan g (VIT.19)

Fo
Tj .

Using equation (VII.13) derived above when there exists a known
functional relationship between the cross-sectional area of the metal
and the motion of the rolls, and equation (VII.19) when the varia-
tion of the cross-sectional area of the metal over the length of the
zone is given in the form of a curve without an analytical expression,
we can find the reductlion ratio at any section of the groove. After
this Lhe contact area and the pressure of the metal on the rolls are
determined by the usual method.

where Ay =

3. MORE ACCURATE METHODS OF DETERMINING
THE CONTACT SURFACES

The above method of determining the reduction ratio at differ-
ent sections of the rolled blank during the working motion of the
rolls is based on the fact that the dimensions of the transient portion
of this blank are known, i.e., the curve AB (Fig. 236) is the actual
variation of its cross-sectional area and not variation of the groove
cross section. It is not difficult to see that when the above method
is used, the effect of the elastic deformation of the roll stand (includ-
ing the volls) is taken into account together with that of the forward
slip, since these phenomena are compensated for by the corresponding
value of the feed. If, say, for each cycle of the rolls the point 4 returns
by an amount x5 as a result of the forward slip (Fig. 236), then the
feed s must be increased by the amount

AA1=S+$fS
In the case where the variation of the cross-sectional area of the

groove, but not of the transient portion of the rolled blank, is
known, the method of calculating the reduction ratio discussed in
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the preceding two sections must be corrected for the elastic defor-
mation of the working stand. Since the character of the deformation
over the cycle of the rolls varies considerably, the pressure of the
metal on (he rolls and correspondingly the elastic deformation also
change. At the beginning of the motion of the rolls, when they form
a clearance, the elastlc deformatmn is zero; il appears afterwards,
altains a maximum and disappears at the end of the motion of the
rolls. It follows that for an accurate calculation of the reduction
ratio we must also know the variation of the pressure of the metal
on the rolls during their motion. Then the curve characterizing the
variation of the groove area during the motion of the rolls must be
corrected, by allowing for the elastic deformation (Fig. 238):

Fy=Fypt b, (VI1.20)

where F, is the cross-sectional area of the rolled blank, calculated
from equations (VII.10) and (VII.10)
F. 4 is the area of the groove
P is the pressure of the metal on the rolls
¢ is the rigidity of the components of the stand
by, is the mean width of the rolled article.

When thin-walled tubes are rolled it is necessary to consider also
the effect of the local elastic deformation A of the mandrel, which
can be calculated ‘approximately from equation (V.21). In this case
F is delermined by the following equation (Fig. 239):

Fo=Fygr- 2,1 280, (VIL.21)

When the ratio of the diameter of the rolls to their motion is
large, it is advisable to consider the additional displacement of the
metal due to the fact that part of the volume CH,C,K (Fig. 236)
will be taken up by the roll. This problem has been considered in
detail by R. Ritman and the author in relation to a planctary mill.
It is solved in a similar manner for Pilger and rockright mills.

In determining this additional displacement of the volume we
must consider two possible cases differing from each other in the
extent of the displaced volume in the direction of the horizontal
axis:

(1) the displaced volume is so small in relation to the distance
between the rolls (Fig. 239a) that

s << Az, <<r(sin @+ sin @)

where r is the radius of curvature of the working surface of the roll
where it contacts the metal being rolled;



Fig. 238. Variation of the groove arca F, gr (I) alter correcting
for the elastic deformation of stand (¢) and mandrel (3)

hy

(a)

Fig. 239. Volumes displaced by the mandrel corrected for the
volumes taken up by the rolls:

(a) Axy < 2rsin ¢; (U) Ax, > 2r sin ¢; O, and O, are axes ol rotation of the
rolls; Oi and sz arc the centres of the mean curvature of Lthe contact sir-
faces of the rolls
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(2) the displaced volume extends outside the limits of the con-
tact surface (Fig. 239b), where
Axy > r (sin ¢ +sin ¢,)

The boundary between these two positions ol the rolls is where
the curve B,C,C; (Fig. 239a) of the displaced volume begins to cut
the surface of the roll at a distance from the horizontal axis exceeding

e gy »te— GZL‘H‘—GJ——
Az,
2

(b)

Fig. 240. Determination of the displaced volumes includiug the
volumes taken up by the rolls:
(a) Axy < 2r sin @; (b) Ax, > 2r sin @

h,, i.e., the point C, reaches the point H, and will be displaced fur-
ther towards the right. This case corresponds to the conditions

CD == CzDz

i.e.,, ¢ = @, or
Az,=2rsin¢

In the first case—if we assume the width of the blank to be equal
to unity and if the arc of contact is replaced by a chord—the dis-
placed volume can be expressed as (Fig. 240q):

V== hos=rsin ¢ <hx1—% Ah,) + (Az;—rsin ¢) X
1
x(hxi—Ahi+§Ahz> (VIL.22)
where s is the feed;
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Ah, and Ah, are determined from the equations:
rsinga VrAh,
Az, —rsing ~ VrAh,
Substituting these values of Ak, and Ak, into equation (VIL.22),

we can determine Az, and hence the contact area for the given A,y
and .

In approximate calculations, if the term 1—; Ah, is neglected in equa-

tion (VII1.22) in view of its smallness in comparison to k.4, and if
it is borne in mind that

Al =rsin?¢
we obtain

hos—rsing <hx1 —% rsin2 ¢ >

hyy—rsin2 g

Az = 4-rsing  (VIL.23)

In the second case, when
Az, > 2rsing
the displaced volume is given by DCH,C,D, (Fig. 239b). Its value
is (Fig. 2400):
Vi=hes=rsin ¢ <hx2—% Ahl> -+
La, (/zxz— Ay Ahz> +ay [ e - L (Ahy— M) ] (VIL24)

This equation can be further supplemented by the equation-

Ahy— Ay

L (VIIL.25)

4= Azg— (rsing -lg) =

Taking into consideration that
2
Ay -~ rsin? @ and Ah, _-‘-lr"_

we can find Az, and (a; -+ a,) from equations (VII.24) and (VII.25).

However, since the substitution leads to a complicated equation,

it is advisable to use a simpler method. In this case the value

Az, is found by equating the area DCH,C,D, to the area of a triangle:
1103 = AI2IIA<2

Hence

Az, = 2ot (VIL.20)

T o
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After this the value I, is found from equation (VII.23), by
assuming that tan @ =~ sin g:

T an?
o= — rta2n(p 4 ‘/r [a4]' ? Az, tan 0 (VIL.27)

or

@) Qn=ay -1 sin Q= — mn rp ‘/1 b= 'hl“;“ (P> (VII.28)
\)
From formulas (VII.23) and (VII.28) we can find the contact
surface not only on the basic section I (see Fig. 237), but also at the
end of the working motion on the section I,.

4. THE DEPENDENCE OF TIIE EQUATIONS F.=f (x) ON
THE REDUCTION CONDITIONS PREVALENT
ON THE TRANSIENT PORTION OF THE BLANK

In many cases it is advisable to carry out die rolling under the
given reduction conditions over the transient portion of the blank, i.e.,
involving the principal portion of the working motion of the rolls.

We consider first the nature of a curve showing the variation
in the cross-sectional area F, of the rolled arvticle during the motion
of the rolls for the reduction ratio to be constant.

In this case at all cross sections of the transient portion the follow-
ing equation must hold

A= %: const. (VI1.29)
X

To determine the equation of thecurve, which guarantees a constant
reduction ratio, we use equation (VII.10) derived above. The
quantity tan @ which in this equation can obviously be expressed
as (see Fig. 236):

tan ¢ = L (VIS0

dz
Substituting this value of tan ¢ into equation (VI1.10) and divid-
ing the variables, we obtain

APy 321
F: = 2Fs

dx (VILS31)

After integration we have
1 AZ—1

Fy  2Fgs T
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The constant C is delermined from the initial conditions wlhen
z =0 and F, == Fop. We obtain then:

1
C»-‘F—O
R N
Fy Fy 28 '
Hence
. (VIL32)
2s e+l

This formula gives the curve F, == f (z) for the variation of the
cross-sectional area of the transient portion of the rolled metal along
its length if the reduction ratio is to be constant over the entire
section.

But formula (VII.32) is not quile accurate since in deriving
al'y

o as constant over the section Az

it we took the derivative
(Fig. 230).

To derive the accurale cqualions (wo inilial conditions must he
satisfied:

(1) according to equation (VII.G) the area bounded by the curve
F, = f (z) on the section from z — Az to z (sce Fig. 236) is equal
to the product of F, and the feed s, i.c.,

S f(z)dx==Fs (VII.33)
x—AX

(2) the ratio of the end ordinates of the section mentioned in the
first condition is, in accordance with equation (VII.2), equal to the
reduction ratio:

f(x):f_(i;_‘\i) (VIL.34)

To determine the required relationship #, = f (z) from these two
conditions A. Iroshnikov proposed the use of the following method.

We suppose that the required relationship #, = f (z), as in the
approximate method of calculalion, is a hyperbola whose equation
is similar in form to equation (VI11.32):

a

Fao ] (0) = 55 (VIL.35)

If the constant coefficients are found and they satisfy the condi-
tions (VI1.33) and (VII.34), then clearly the assumption made by
us is correct and equation (VII.35) will be the required relationship
F. = f(x). Procceding from the initial conditions (x = 0 and
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F, = F;) and using equation (VII.35) we find the coefficient a:

a= Fo
Then equation (VII.35) assumes the form
a .

Substituting the value of f (z) from this equation into equation
(VI11.33), we obtain

X
F
S jatp dr - Fos (VIL.37)
x=—Ax
or, after integration,
1 bzr +1 o
Tl a1
from which
bx+l b
m = s (VII.38)
We further find that
1 /bx-i-1 ‘
x—Ax:7< - —1> (VIL.39)

Substituting this value of £ — Az for z into equation (VII.36),
we obtain
Foebs

f(x_Az):bx-H (VII.40)

The values of f(z) and f(z — Az) obtained from equations
(VII.36) and (VII.40) are substituted into equation (VII.34):
Fy  Fgeb® 1
br--1 bzf1 A

Hence
ebs o _%_
or
p— loge (VIL41)

S

Substituting this value of the coefficient into equation (VII.36),
we obtain the required relationship:
Fo

s
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This equation shows how the cross-sectional area of the blank
being rolled must vary with the length of the transient portion if the
reduction ratio is to be constant over the section I; (see Fig. 236).

To test the correctness of this equation let us calculate the reduc-
tion ratio using formula (VIL.34).

We substitute the value of #, into equation (VIIL.33):

Ry X
F
Fys = \ = S —=  dx
o log, A »
x—Ax x—Ax —S‘IT
‘whence
loged (. Azyq— <loge 1 )
- =

The value of z — Az, taken from this formula, is substituted for =
into formula (VI1.42) and F,_s, is found as follows:

1 Ax — lOEe )

The reduction ratio is determined from equation (VII.34):

A.x — F.\'—Ax — FO FO
- Fy 1 loge J()ge
- < +1> 241

The reduction ratio for the entire section is found to be constant
and equal to A. Consequently, the assumption made in deriving
formula (VII.42) is correct.

In a similar way we can derive equations which show how the
cross-sectional area of the transient portion of the metal must vary
for the reduction ratio over the section I, to be given by

Ax=DMAo--ax (VIIL.43)

wlere A is the reduction ratio at the beginning of the motion
of the rolls
o is the tangent of the angle of inclination of a straight
line to the herizontal axis, characterizing the given
variation of the reduction ratio (Fig. 241).

When the reduction ratio diminishes with the motion of the rolls
(see the dash line in Fig. 241) a minus sign must be put in front
of the coefficient « in this equation.

The equation for determining the required variation of the cross-
sectional area for given rolling conditions, in accordance with
equation (VII.43), is based on the same conditions as in the case of
equation (VII.42).
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The first condition [see equation (VIL.33)] is also valid for this
case. But the second condition [see equation (VII.34)] is

_ 1 (z—Az) 1T 44
f(x)—;%_f_—m (VII.4%)

Using the same method as in deriving equation (VII.42), we oblain
equations (VIL1.36) and (VIL.40). Equation (VIL.40) can be used in

Az

.

S
<

|
Y

Fig. 241. A given linear variation of the reduction ratio over the
transient portion ol the blank

Az

(@)
Mz (

|-

Fig. 242. A given non-linear variation A, == ¢ (z) of the reduction
ratio on the transient portion of the blank

vy

this case, if to simplify the calculation and the [inal results, the varia-
tion of A, over the section Az is neglected. Then in integrating equa-
tion (VII.37) we can assume that b does not depend on =x.

The values of f (z) and f (x — Az) from equations (VII.36) and
(VIL.40) are substituted into equation (VI1I.44):

FO Fneb: 1

bz+1~ bzt1 2y ar
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whence
€Y = Ay ax
or '
b .- 108 (ho F07) (VIL45)

S

We substitute this value of the coefficient b into equation (VII.306):

- Iy o
Fx_]()ge(XO»g— a.l')x+1 (VIL.46)

N

The given formula shows how the cross-sectional area of the blank
must vary over the transient section, if the reduction ratio over this
section is to vary according to the linear law given by equation
(VII.43).

For the same conditions, if the variation of the draught ratio
is assumed arbitrarily (Fig. 242):

Ay =1 (2)

then the final formula, showing how the required law of tlie variation
of the cross section over the transient section must be determined,
has the form

N E— (VIL4T)

T Toge v (@), L,
S o
Equations (VII.42) and (VII.46) may be regarded as particular
cases of this formula.

=

5. DIRECTION OI' THE FORCES ACTING ON THE ROLLS
OF PILGER MILLS

The direction of the forces acting on the rolls of Pilger mills is
found in the same way as for the usual longitudinal rolling, when
external longitudinal forces are applied to the metal being rolled
(see Chapter IV, Secction 2). In the present case this external [orce
is furnished by R, the resistance of the mandrel (including the iner-
tial force), which acts in the direction opposite to the direction of
rotation of the rolls (Fig. 243).

Accordingly the resultant forces P on the rolls are slightly inclined
to meet the metal being rolled. The angle 6 between the direction
of the forces P and the vertical plane depends on the ratio of the
force R to the pressure of the metal on the rolls:

. R
snb=-- (VII.48)
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The force R is equal to the sum of the following quantities:

R = pFi— pt'y +-pG - U

piston areas
coefficient of {friction
weight of the moving parts (mandrel, piston,

carriage, tube, etc.)

where  p, is
chanism
po is  the
F,and F, are the
p is the
G is the
U is

G .
U=—
g]

where ; is the acceleralion of the tube

g is the acceleration of gravity.

(VIL49)

the air pressure in the cylinder of the feeding me-

air pressure in the carriage

the inertial force, given by the formula

The torque necessary to drive both rolls (Fig. 243), i.c., Lhe

rolling torque, is

M =2Pa = 2Prsin (p+0)

(VIL.50)

where r is the radius of the working surface of the roll where the

e‘d—
! @
// -
a, |f; /‘?
0/.
A ] —
P N

/ 0y
1 \
0, L'l \p
N
8
Fig.243. Direction of the result-
ant forces applied to the rolls
of a Pilger mill:

O; and O,—axes of rotation of the

rolls; Oy and Ga—centres of local
curvature of the working surfaces
of the rolls

P is

We find

where e is

force P is applied, mecas-
ured from the centre of ils
rotation

the angle characterizing the
location of point of appli-
cation of the force P.

the angle [ from the con-
dition that

rsinf=e--c (VIL.51)

the distance between the
planes passing through the
axes O, and O, of rotation
of the rolls and through the
centres O, and O, of curva-
ture of the working surfaces
of the volls at the point
where they touch the metal
the distance from the plancs
passing through the points
O; and O, to the point of
application of the resultant
of the pressure of the metal
on the rolls.
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If we neglect the effect that the asymmelry of the specific pressure
distribution diagram has on the position of the resultant ol the
pressure of the metal on the rolls, then from Fig. 240,
for the case where Az, < 2r sin ¢, we obtain:

Ax . . .y
e~ —2—1 —rsin ¢ (VIL.52)
and for the case where Az; > 2r sin ¢:

I

e a—’jz_—@—rsin ¢ (VIL.53)

where the values of Az, a; and a, are found [rom equations (VII.23)
and (VII.28).

6. PRESSURE OF THE METAL ON THE ROLLS
OF ROCKRIGHT MILLS

In order to determine the magnitude and direction of the forces
acting in mills of the rockright type for cold rolling of tubes, lel us
first analyze the kinematic diagram ol the rolling process. Since
the motion of the rolls is transmitted by shaft-mounted gear wheels
being in constant engagement with stationary racks, the velocity
of the individual points of the rolls can be expressed by the diagram
shown in Fig. 244.

The velocity of the working surface of a roll, v,,, depends to a large
extent on the distance y from the given point of the groove surface
to the pitch line of the rack, CD (Fig. 244):

uw_—.i;;y (VIL.54%)

where vy is the velocity of the displacement of the roll stand
ro is the radius of the pitch circle of the gear in engage-
ment with the rack.

Since ry is greater than the radius of the hottom of the groove and
smaller than the nominal radius of the roll, i.e., the distance from
the axis of the roll to the axis £F of the tube, three regions with
different rolling conditions are possible on the contact surlace,
depending on the advance of the metal:

Uy ==va to vy ]
Uy > Vp {
Vw << Ua J
where v, and vy are the velocities of the metal at the sec-

tions passing through the points 4 and B
(Fig. 244).

(VIL.55)
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The first case corresponds to the usual conditions of longitudinal
rolling, when slipping having two directions occurs over the arc of
contact, i.e., the zones of backward and forward slip are observed.

In the second case the contact {riction forces acting from the roll
on 1o the metal over the entire arc AB are oppositle to the direction

Fig. 244. Velocity diagram for different points of the rolls of mills for cold
rolling of tubes and corresponding parts of the contact surface for different
slippiny conditions:

D -=slationary rack; F'F—axis of the tube and mandrel; I—region of complete forward
slip; 2 and 3—regions of complete backward slip; 4 and 5—regions where T =04 to vp

of exit of the metal from the rolls. Consequently, the region where
v, > vg is a zone of continuous forward slip.

In the third case of rolling, when v, << v,, the contact friction
forces are directed towards the exit of the metal from the rolls. In
this case, too, the region of the contact surface is a continuous zone
of backward slip.

If on the contact surface there is a region where the conditions
of slipping predominate as in the first case, then the rolling process
will be unstable, since over the displacement of the stand the diame-
ter of the mandrel and the velocity of the rolled metal will vary.

In practice such rolling is usually used when the contact surface
has a region characterized predominantly by the conditions of slip-
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ping corresponding to the second case, i.e., the zone of forward slip.
Then during the working motion of the rolls, longitudinal tensile
stresses arise in the basic part of the rolled tube; these stresses pro-
mote a better deformation of the tube, and reduce the spreading.

Rolling with prevalence of regions on the contact surface character-
ized mainly by the conditions of slipping corresponding to the third
case of rolling, i.e., the zone of backward slip, is less practicable than
in the case where v,, > v;;, owing to the fact that during the forward
motion of the rolls compressive stresses appear in the tube instead
of the longitudinal tensile stresses, and these impede deformation.

In connection with what has just been said the regions with these
three conditions of slipping must approximately be arranged as
shown in the lower part of Fig. 244.

The relation between the three regions in question varies with
the motion of the rolls. At the beginning of their motion the zone
of forward slip must be Jarger than at the end, when both y and v,
are reduced. During the return motion of the rolls the directions of
rolling and slipping are reversed. Since the velocity of working sur-
face of the rolls relative to v, remains unchanged, the contact
surface, as in the forward motion, will consist of regions clharacter-
ized by three different rolling conditions: a region of continuous for-
ward slip over the entire arc of contact AB; two end regions of con-
tinuous backward slip, and two intermediate regions where the
direction of slipping changes.

The velocity of slipping of the rolls along the metal changes not only
during the motion, but also over the arc of contact AB (Fig. 244).

At the point A (Fig. 245a) the forward motion of the metal during
the rolling can take place only at the beginning of the motion of
the rolls, as a result of the clastic deformation of the tube and the
action of the feed mechanism. The velocity v, of this displacement
is very small, and is much less than at the point B, where the metal
is displaced as a result of its reduction, i.e.,

Va<Up

The variation of the slip over the arc of contact AB in the zone of
forward slip during both forward and return motions can be ex-
pressed approximately as trapezoidal diagrams (Fig. 245a and b).

Analyzing the character of the slipping of the rolls and the man-
drel along the metal during the forward and return motions, we notice
that the conditions of deformation differ markedly in the two
cases. In the first case the deformation of the metal in the zone of
forward slip takes place between surfaces which move in different
directions relative to the metal, whilst during the return motion
they move in the same direction. Conversely, in the zone of back-
ward slip the deformation during the forward motion takes place

26 -662
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between surfaces along which metal slips in the same direction,
whilst during the return motion the slip is in different directions. In
both cases, however, the contact surface of the metal and the rolls

UVw-Uy e
Uy~

Ug

Fig. 245. Direction in which the metal being rolled slips along the roll in"the
zone of forward slip and along the mandrel, and the corresponding velocity
diagrams:

(a) forward motion of the rolls; (V) return motion

and mandrel consists essentially of regions of continuous slipping,

a neutral section being absent. Accordingly, no rise is observed in
the specific pressure diagram over the middle portion of the contact

surface.
N T %
——
t
—
{ % [ -
—_— 7
T

(a (6)

Fig. 246. Direction of the contact friction forces acting on the metal
in the zone of forward slip in mills for cold relling of tubes:
(a) lforward motion of the rolls; (b) return motion

From these diagrams showing the direction of the contact friction
forces (Fig. 246) we can determine the laws giving the distribution
of the specific pressure. The specific pressure diagram over the por-
tion where the friction forces have opposite directions can approx-
imately be expressed for the forward motion by a trapezium
(Fig. 247a). One side of this trapezium, when the deformation is
assumed to be two-dimensional, is

pa=2k—o04
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where 0, is the tensile stress in the tube,
whilst the other side is

pp =2k

In this way the mean specific pressure in the zone of forward slip,
over the region where wall thickness of the tube is reduced, can be
determined from the expression

P o= 2k — % (VIL.56)

We find the value of o, from the equation
P R
Oa=Eg- (VIL57)

where & is a coellicient indicating what part of the {friction force
Py is taken up by the tube
P is the overall pressure of the metal on the roll
p is the coefficient of friction between the roll and the tube
being rolled
Q. is the cross-sectional area of the tube in the plane passing
through the point A.
The coefficient § depends on the ratio of the wall thickness of the
tube to the angle of inclination y of the gencratrix of the mandrel

’

fa—n~2k +—<0A-’

.

s

v 4

o

A B

(a) (o)

Iig. 247. Pressure distribution in zones where the wall thickness
of the tube is reduced when it is rolled in a rockright mill:

(a) forward motion of 1he roll in the zone of forward «lip; (M) return motion
in the zone of forward slip, and forward motion in the zone of ackward
slip

)N

8

to its axis. If we denote the pressure of metal on mandrel—acting

from one roll perpendicularly to the axis of the mandrel—by Y,
then clearly

S ACTELL (VIL.58)

where py is the coefficient of friction between the mandrel and the
metal being rolled.

26*
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During the return motion of the rolls, the friction forces acting
in the zone ol forward slip—both from the side of the rolls and from
the side of the mandrel—are characterized by the same direction
(see Fig. 246b), as in the usual rolling in the zone of forward slip.

If we assume that slipping takes place according to the law of dry
friction, which is very likely, then obviously the specific pressure
can be calculated from ecquation (I1.35). Then the diagram of
the distribution of the specific pressure is expressed by the curve
(sce Fig. 247b) plotted from this equation.

Clearly, the specific pressure at the point B is

pu=2k

whilst the pressure at the point A is found from equation (I1.35),
substituting hy :hy in this equation, where h, is the wall
thickness of the tube at the section passing through the point A.

The increase of p, above 2k shows that compressive stresses exist
at the point A:

The mean specific pressure during the return motion is approx-
imately given by:

. 04

P == 2k - 5

(VIL.59)

Yrom the analysis just carried out into the pressure of the metal
on the rolls we can conclude that during the forward motion of the
rolls rolling is more effective than during the return motion, when
compressive stresses arisc in the tube increasing the specilic pressure
and the spreading.

The results of investigations by V. Sokolovsky are of the greatest
interest among the available experimental data on the forces which
arise in rockright mills. He established that the pressure of the
metal on the rolls during the forward motion differs only slightly
from the pressure during the return motion, in spite of the lact
that the tube was fed only during the forward motion. The lon-
gitudinal forces arising in the mandrel were found to be in the main
tensile during the forward motion, whilst during the return motion
they were wholly compressive. These forces amounted on average
to 3 1o 15% of the pressure of the metal on the rolls. At the same
time their absolute value was usually about 1.5 to 3 times greater
during the return motion than during the forward motion.
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7. DIRECTION OF THE FORCES ACTING ON THE ROLLS
OF ROCKRIGHT MILLS

In order to determine the direction ol the forces acting on the
rolls and also that required to move the stand, let us first con-
sider the conditions of equilibrium of the tube together with the
mandrel, and then of the rolls.

For equilibrium of the tube and the mandrel the horizontal
projection of the pressure P of the metal on the roll must clearly =at-
isfy the following equation (for two rolls):

Psin0— 2 (VIL60)

where 0 is the angle of inclination of the force P to the line connect-
ing the axes of the rolls, and
R is the axial force acting on the tube and the mandrel.
Setting up the cquation of the moments of the forces relative to
the axis of the top roll, engaged with the gear wheel of the hottom
roll, we obtain (Fig. 248a):

Pa=Pr,sin (0—p)- -1 yrs (VII.G1)

where a is the lever arm of the force P
r, is the working radius of the roll
p is the angle characterizing the position of the point of
application of the resultant ol the pressure of the metal
on the rolls
T, is the peripheral force on the spur gear
ry is the radius of the pitch circle of the spur gear cngaged
with the gear wheel of the bottom roll.
From this equation we find that

Ty =P - sin (0—p) (VILG2)
g

If the influence of the friction forces in the bearings is neglected,
then from the condition of equilibrium of the roll it follows that
the resultant Q of the forces P and 7, passes through the axis of
rotation of the roll, as shown by the dash line in Fig. 248a. When
these forces are taken into account, the resultant Q touches the fric-
tion circle.

From the force diagram (Fig. 248a) and equation (VII.G2) it {ollows
that for 8 == B the force P passes through the axis of the roll and is
equal to the force Q. In this case the force on the spur gear becomes
zero, and when p > 0, its direction changes. To avoid unneccessary
impacts on the gearing, it is advisable to use such a deforma-
tion scheme with which 8 > B.
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Fig. 248. Direction of the forces acting in mills for the cold rolling
of tubes during the forward motion of the stand:
(a) top roll; (b) bottom roll geared to the rack



FORCES DURING DIE ROLLING 407

If the friction forces in the bearings are taken into account, then
the direction of the forces changes when

rrsin (0 —B) <p (VIL.63)

where o is the radius of the friction circle of the journals of the
rolls.
The direction of the forces acting on the bottom roll can be deter-
mined in the same way from the equation of moments, taking into
account the force applied to the roll from the rack (Fig. 248b):

Pa=Pr.sin (0—B)==Troro—Tyryg (VII.G4)
where T,, is the force on the rack, and
ro is the radius of the pitch circle of the gear engaged with
the rack.

Substituting into this equation the value of 7'y from the expres-
sion (VII.62), we find the [orce on the rack:

T,azzl);—;sm (0—p) (VIL63)

It follows from this equation that the force on the rack (since
rg < ry) slightly exceeds double the force on the gear transmitting
the motion to the top roll:

Tru>2T:,'

The direction of the force on the rack, like the force 74, changes
when p > 0. If the friction forces in the bearings of the rolls are taken
into account, then the change of direction takes place when

resin (0—p)<<p (VIL.60)

The static force required to displace the rolls,i.e., the roll stand
without taking into account the friction losses in the bearings and
guides, is determined as the horizontal projection of all the forces
applied to both rolls. The force required to displace the top roll is

Xy Psin0—T,=P | sin 0 — = sin (0 ) (VIL.G7)
o ,g R

and for the bottom roll

Xy=P [ sin0—r, .i——ﬂ> sin(0—B) | (VIL6S)

To Tg N
Since ry << rq, the force necessary to displace the top roll is some-
what larger than that for the bottom roll. The total force necessary

to displace both rolls is:

Nige= Ny =X, 2P [sino_:—;sin(e_m (VIL.GY)



Fig. 249. Dircection of the forces acting on the rolls during Lhe
return motion of the stand

(a) (6)

Fig. 250. Dircction of the forces acting on the rolls for an
cxcessively large diameter of the gear wheel engaging with the
rack, when zones of backward slip predominate:

(a) forward motion; (b) return motion



FORCES DURING DIE ROLLING 409

During the return motion of the rolls the directions of the forces
acting on them are found in a similar manner, with the only
difference that the force R acts in the opposite direction
(Fig. 249).

If rolling takes place with a predominance of zones of backward
slip, then, as was mentioned above, the sign of the longitudinal stresses
arising in the tube over the region from the feed chuck to the rolls is
changed. The force P consequently will be inclined in the opposite di-
rection, but its angle of inclination is still given by cquation (VII.G0).
The direction and magnitude of the forces acting on the spur gears
and the rack in this case of rolling can be found by the method given
above, using equations (VII.62), (VII.65) and (VII.67) to (VII.GY)
and reversing the signs of the corresponding terms (Fig. 250).

8. THE KINEMATICS OF ROLLING IN PLANETARY MILLS

The relationship of the velocities of the working and support
rolls and the cage (separator) is conveniently represented in the form
of a diagram (Fig. 251) characterizing the variation of their velocities
over a region from the centre of the support rolls to the point
where the working rolls touch the metal being rolled.

During running idle when the slipping of the working rolls on
the support rolls is absent, from this velocity diagram we find

Uy- "2Uca_vsup (VII70)

where v; is the velocity of the working roll where it touches the
metal being rolled
V., 1s the velocity of the cage
Usup is the peripheral velocity of the support roll.

It follows from this equation that the support rolls and the cage
tend to impart a peripheral velocity to the working rolls which
differs markedly from the velocity of the rolled metal. If during the
exit of the metal from the rolls the peripheral velocity of the working
roll is equal to or not less than the exit velocity vy of the metal,
i.c., v; =~ v,, then, as the rolls approach the metal, a large differ-
ence hetween their velocities and the entry velocity v, of the
metal will be ohserved:

1A
Uy > Ug COS (p == —}—3— cos
where A is the reduction ratio

@ is the angle characterizing the position of the working
roll when it begins to contact the metal (Fig. 251).
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Owing to this, an impact occurs at the beginning of the contact
of the working roll with the metal, and then some slipping of this
roll takes place along the metal being rolled, but most slipping

S —

Fig. 251. Working arrangement of the rolls of a planetary mill
and the corresponding velocity diagram

occurs on the support roll whose surface has a lower coefficient
of friction than the rolled metal. This velocity of slipping can he
calculated approximately from the equation

Vi == Vg COS Q1= 2 (Veg— Vo COS Q) — Uy p (VIL.7T1)

As the rolling proceeds and the velocity of the motion of the metal
increases, the velocity of slipping shown in the velocity diagram
(Fig. 251) by the dash linc decreases:

Ugr* 2Ueqg— Uy COS P — Vyp (VIL.72)

where v, is the velocity of the forward motion of the metal being
rolled in an arbitrarily chosen section
¢, is the angle characterizing the position of the working
roll at this section.
When v, = v, the velocity of slipping approaches zero.
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9. DETERMINATION OF THE CONTACT SURFACE
IN PLANETARY MILLS

Each working roll will displace a volume of the metal. correspond-
ing to the area ABB’A’ (Fig. 252), which is determined by the value
of the feed for one working roll:

Lo 7
e (VI1.73)
where v, is the {eed velocity of the slab in the planetary stand
ne, is the rotational speed of the cage
z is the number of working rolls.

The magnitude and direction of the resultant of the pressure of the
metal on the rolls, and, consequently, the feed force from the side
of the feed rolls vary for cach working roll passing through the reduc-
tion zone. Correspondingly the feed velocity will vary also.

Neglecting this variation of the feed velocity, we assume that the
magnitude of the feed s for any working roll remains constant over
the entire reduction zone, and that the curves A5 and 4’8" bounding
the displaced volume arc equivalent (Fig. 252).

5 |8

[ l:
<l

Fig. 252. The displaced volumes when rolling metal in a plan-
etary mill

In this way the process of planetary rolling becomes analogous to
the metal working process on Pilger mills, where the metal is fed
at definite time intervals into the open grooves to shape the indi-
vidual portions of the rolled article. Consequently, the results ob-
tained in the analysis of the features of die rolling (sec Section 1
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of Chapter VII) may be used for calculating the forces arising when
metal is rolled in a planetary mill.

The volume of the metal entering the reduction zone per working
roll is determined from the equation

V() == hosb (\71174)

where ki, is the initial thickness of the blank
O is the initial width of the blank.

The quantity & can be taken as constant, since spreading is not
large when the metal is rolled in planetary mills.

In the {following results the quantity b will be taken equal to unity.

It is obvious that, for any position of the working roll in the reduc-
tion zone, the volume V), is equivalent to the sum of the two volumes
shown in Fig. 253:

VO c ZVA:!’J[E(,‘ - zVC(:'E'E
or
1 7 T «
V 0 2V A’ACK — 2V MEK - ZVCC'E’E

During rolling the volume 2V, usually does not exceed 0.003V;
consequently this volume can be neglected. Then

Vo==2V i aex-i-2VeceE

The volume V, . cx represents (if forward slip is neglected) the
volume displaced when a working roll passes the reduction zone over
a length z. As a result of this displacement the straight line EE"
is displaced, by the amount As, together with all the metal locat-
ed to the right of the roll.

From this it follows that

Vaaex Veewp
or
Vo 2Verpp - 2Veo ke
Then
Vo=-2Vcepp

i.c., the volume of the metal fed onto one working roll is equal
to the volume bounded by CC’'DD’ (the condition of constancy of
the volume). Owing to this the cross section of the blank over

the portion not yet rolled is given by the curve a, which is equivalent
to AB, but is displaced to point V by the amount Ax:

Az s+ As (VIL.75)
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The curve a is called the displaced initial profile, whilst the volume
2Veepp is called the displaced volume.

The quantity Az serves as the starting point for determining the
contact surface and the relative reduction; hence the first stage in
solving the problem is to find this quantity. As seen from Fig. 253,

’ rr

a4 0 02
v /
' /
—1{§ A , /
m 0/!/
% 0 MN
o N
.Q'N a' 0///
) ax Q0 ~JO
As A
S Z -

Zt D, g Q|N+
—_'_4_1; C'F'D - —'C; f;;' [),7_' T
.1', L’, 1,3

- ('4

Fig. 253. The displaced volumes at the beginning and end of the
reduction zone

over the whole reduction zone the displaced volume is bounded by
outlines of different shapes (see, for example, CC'D’'D and C,C;D /D),
depending on the magnitude of the displacement and the distance
between the working rolls. Accordingly the quantity Az should be
determined by different methods.

Case I. The displaced volume is so small in comparison with the
distance between the working rolls (Fig. 253) that

s<< Az << 2rsing

where r is the radius of the working roll.
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Here the value of Az can be found without a significant error (with
accuracy up to 5%), from the usual formula for the reduction ratio:

Ax:jl_o_s_
tex
or
Az sA
where h,, is the thickness of the strip at the exit from the working

rolls
A is the reduction ratio.
Case I1. The boundary of the displaced profile (Fig. 254) is given
by the inequality:
Az > 2rsing

It is obvious that in this case the displaced volume is not
bounded only by the two circular arcs of the working rolls, as in
the preceding case.

]
'
A
4
-Qa\
N
N 8
Ax
@
g

Fig. 254. The displaced volume when Az > 2r sin ¢ (case II)

Indeed, if the displaced volume were located only between the cir-
cular arcs of the working rolls, then it would be bounded by the out-
line ABCDD'C'B’A’, corresponding to the length Az. The quantity
Az characterizes, as was mentioned above, the displacement of the
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initial profile, and hence
AA’=PE

Furthermore, at a distance Az from AA’ the displaced volume
would be determined by the height DD’ > PE, which is not possible.

The following rule may be deduced from this: {from the instant
when Az > 2r sin ¢, the displaced volume is described by a profile
formed not only by the circular arcs of the working rolls but also by the
displaced arcs of the initial profile, and is bounded by vertical line
segments equal to the thickness of the strip at the exit.

The magnitude of the displaced volume is

VO = VAPEA’ - VA’NLC’ - VRCPV
or

hos == Axher—r (1 —cos ¢) 2r sin ¢ -- y—zj— (Az—2rsing)
After a transformation we have
Ros == hox Az - 1’71 Ar—ry sing—2r2sing (1 —cos¢) (VIL76)

where y, is the difference between the maximum thickness within
the limits ol the displaced volume and the thickness
of the strip at the exit.

In selting up the second equation we assume that the initial profile
is formed by the circle of the outer orbit of the planctary roll,
with the radius

R= Rgp+2r

where Ry, is the radius of the support roll
r is the radius of the working roll.
This will be true, if we neglect the forward slip of the metal and
the feed velocity, which slightly distort the form ol the initial profile:

Az =rsing-- ‘/L(i——coscp)r—}—%—] 2r -

+V(hcx’|‘yl_hl) Ifﬁl/(;’cx_hi) 1t (\“77)

where %, is the final thickness of the strip.
Thus the value Az can be determined from the two equations:

lgs = h,xAx—{—%i Az —ry;singp —2r2sin g (1 — cos ¢) \

Az: rsing-+ l/l (1 —cos @) r—L%J 2r-- (VIL.78)

|
|
JFl/(h(:x’I‘yl'—hi) 1{_'1 (hax—hl) R J
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Case I11. The axes of the working rolls are located on aline connect-
ing the centres of the support rolls. Here ¢ = 0 and k., = hy.
Equations (VII.78) assume the form:

legs - hL,an:—;—%iAx 1
_ - (VIL.79)
Ae Vyr-+VyR )

Case IV. The determination of the value of Az after the working
roll has intersected the line connecting the centres of the support
rolls.

o ‘
\ j
/
g, s |
B/ K X
A [ *
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Y. 7 17/ *
8 X
® c /
/ \\ Ax

Fig. 255. The displaced volume, when the axes of the working
rolls intersect the line connecting the centres of the support rolls

The working rolls, passing the extreme low position, begin to
separale, deforming the displaced volume in such a way that its
profile, in the greater part, is given by the radii of the outer orbit.
It is obvious that when the working roll loses contact with the
metal, the profile of the displaced volume will be determined solely
by the radius of the outer orbit. In an intermediate case the
magnitude of the displaced volume (Fig. 253) is:

Vo=Varvrpe+Vinovp--Veckxcn

or

hos  hg Az '1{2‘~ Az Rsing (hy—=lex—y)
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Setting up the second equation we obtain the system of equations

Ax = ,Rsinq)—{—]/ Lr(l—cos Q) -}—y—z‘] 2r—rsing-
+ V(hex y—h) R
Az - hos—R sin @ (hy—hex—y4) (VI1.80)
Y1
hex’f‘j

If the elastic deformation of the parts of the working stand is
neglected, then the crests of the metal rolled in the planetary stand,

/
o ! /
Xles @
s * k
.
N ] &
———
AT

Fig. 256. Form of the strip emerging from a planetary stand
and the angle ., at which the working roll ceases to be in contact
with the metal (Fig. 256) can be determined from the equations
lgs == Az [liy - B (1 —cos @)}

and
Az = 2R sin ¢,

Then the angle . is found from the equation
hps = 2R sin g [, -- R (1 —cos @.)] (V11.81)

For small displaced volumes, when %‘ﬁ < 50, the angle ¢, is
1

determined, with a slight error, from the formula

h .
(pc-—-ﬁ radians (VI1.82)
The height of the crests is
W R (1 —cos gc) (VIL.83)

The next stage in determining the magnitude of the contact area is
to find the length and the position of the arc of contact. As a function

7—662
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of the value of Az, these quantities can be determined in the follow-
ing manner.
Case I (Fig. 257, the left-hand position of the roll):

Az < 2rsin ¢

In all the results which follow we again neglect the distortion™of
the initial profile and also the elastic compression of the rolls. The

YA
~—AT;—
_»A‘T,,‘UI a-'ol
771 T
, |
/4N

@
0',, P / x
) /
A,% ‘\51 Ui )
. 2
/ ~_ —
Z p
0, \ r
z 8
a2 1: [
"‘A.I‘,“‘ —— 41'2—1—»

Fig. 257. Diagram showing two positions of the working rolls

position of the arc of contact is determined by the coordinates of the
points A, and B;.

The coordinates of the point 4, are found from the following
formulas (the origin of the coordinates being localed at the centre
of the support roll):

Ty = (Rsup+ 2r) sin g,
Ya = — (Reup -+ 2r) cos ¢y

The coordinates of the point B, are found from the simultaneous
equations of the two circles intersecting at this point. The first
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circle, with the radius
’ R= Ryy,+2r

is drawn from the centre O; (Az,; O); the second, with the radius r,
is drawn from the centre O; (n,; —&;), where

My -= (Rsup -+ 1) sin ¢y l
& - (Rsup-1-7) cos ¢

It is obvious that, in order to find the coordinates of the point
B, (z5 and yy), we must solve the two equations:

(x— Axy)? 4 y2 = I* ]
(z+m)+(y-8) 1

If we subtract the first equation from the second and divide the
variables, we obtain

2yE et — R2—m2—E3- Aal— 22 (v + Dxy)

(V11.84)

(V11.85)

or
y ri— I!'z"‘(gé-i- £ -+ AI%_I Y ’;’A«'H
1 o1
where
N & (Rup+1)?
Denoting
4 - ’LRL(R;‘}” +rAt o (VII.86)
S1

and

B =Mt Az (V11.87)

&

we obtain the equation of a straight line

y=A— Bz

Substituting the value of y just obtained into the first equation
of the system (I1.85) we ohtain

2?2 —2Az X r-- Ax? - A2— 248 -- B = R?

or
22 (14 B?)— 2z (Az+ AB) -+ Az? - A2— R*— 0
Denoting
C=1+H8? (VII1.88)
K=Az-+AB (VIL.89)
N = Ax? 4 4*— R* (VIL.90)

27*
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we obtain the quadratic equation

—2Kr-+ N=0
We solve this equation:
Ty KEVIE—CH (VIL91)
Ypi,p =~ A — Bz, (VIL.92)

Equating the arc of contact to the chord 4 B (Fig. 257) we obtain
the calculated length of this arc: !

lcalc = V(xB_xl-\)z‘{‘ (yB_yA)‘Z (\’71193)
Case II (Fig. 257, the right-hand position ol the working roll):
Az > 2rsing

In this case the difference in the abscissas of the points A4, and Bz
is determined considerably more simply:

Zp— T4 = Az"=rsing,+ ‘/[7 (1 —-cos (Pz)—]—y—‘] 2r  (VI1I1.94)

and the problem reduces to finding the difference in the ordinates
of these points.

The ordinate of the point A, is found, as in the preceding case,
from the equation

Ya = — (1?3“1) -t 2’) COS @q

whilst the ordinate of the point B, is found by solving the equation
of the circle with radius r, drawn {rom the centre O, (—mns; —&2),
together with the equation of the straight line B.B, which intersects
this circle at the point B,.

Thus the ordinate of the point B is found from the system of equa-
tions:

(z+M2)* -+ (Y1 8o)? =1
T= —Mo—rsSinQa-{s (VIL.95)

We substitute the second equation into the first and express &,
as given by the second formula (VII.84):

(la—rsin @2)?+ [y -+ (Rsup 1 7) cOS @] = r*

We expand the expression inside the brackets and group the terms
with respect to y:

Y24 2y (Rgup - 1) c0S @o -+ 13— 20, sin ¢ -~
+rsin? @y + (Reup + r)?cos? go—r=10
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Hence

Ypt,o == — (Rgyup +7) o8 ¢y £ l/2l2r’ sin @y - r?cos? g, — I}

Then

Yp—Ya=1cos— )/ 2rsing,-i-ricos?o—1:  (VIL.96)

Ilquating the arc of contact to the chord A,B, (Fig. 257), as in
the preceding case, we obtain the calculated length of this arc:

anlc - l/-(‘TB—xA)2 -+ (yB—yA)2 97)

We determine the angle characterizing the position of the working
roll, using the simpler formulas (VI1.94) and (VII.96) for the calcu-
lation.

It is obvious that for such an angle

Az =2rsing, and y, =0

Let us substitute expression (VII.94) into the first equation of
the system (VII.78):

hgS == ligx2r sin @y — 2r? sin g (1 — cos @) (VII1.98)

We determine A, from the formula

hex == 2R (1 —cos @g) + hy (VIL.99)

Substituting expression (VII.99) into (VII.98) we obtain

hos = [2R (1 — cos @q) + Ay] 2r sin @o— 2r? sin @y (1 — cos @)
or

hos == 2r sin @o [(2R —r) (1 — cos @q) -{- 24] (VII.100)

The angle ¢, determined from this equation, even for the maximum
feed, does not exceed 5°.

10. DIRECTION OF THE FORCES ACTING ON PHE ROLLS
OF PLANETARY MILLS

Let us first consider the direction of the forces acting on the
working roil in the simplified case where the bearings of the roll are
completely free of load, i.e., there are no forces acting from the cage.

It follows from the condition of equilibrium that in the case under
consideration the resultant of the pressure of the metal on the roll
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must pass through the centroid of the contact area between the work-
ing and support rolls.

If the effect of the rolling friction of the working roll on the support
roll is neglected, then the angle 8 (Fig. 258) between the direction

Fig. 258. Direction and point of application of the resultant of
the pressure of the metal on the rolls for a single pair of
working rolls

of the force P and the line connecting the centres of the working and
support rolls is

B
0=3

where f is the angle characterizing the position of the point €
(where the resultant of the pressure of the metal on the
roll is applied) and is approximately equal to

B~

Then the torque required to rotate the support roll, without con-
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-sidering the friction losses in its bearings, is
Mgyp—= Pa=PRgyupsinb (VII.101)

If the effect of the rolling friction between the working and support
rolls is taken into consideration, then the point where the force P
is applied to the support roll is displaced in the direction opposite
to the motion of the rolling surfaces by an amount m (equal to the

Fig. 259. Direction of the forces acting on the working rolls
when two pairs of rolls are in the reduction zone

lever arm of friction), and it assumes the position of the point £,
(Fig. 258). The resultant force P will be slightly inclined as shown
by the dash line.

The angle 0, between the direction of the force P and the line con-
necting the centres of the working and support rolls can be deter-
mined from the expression

o,~ 51 (VIL.102)

and correspondingly the moment of the force about the axis of the
support roll is

My, = P (Ryupsin 6, = m) (VIIA03)
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A more characteristic case of rolling occurs when two pairs of work-
ing rolls are simultaneously in the reduction zone (Fig. 259).
The direction of the forces acting on the rolls in this case was con-
sidered in detail by R. Ritman.

Since the support roll and the cage tend to impart to the working
rolls a peripheral velocity which differs from the velocity of the metal
being rolled, considerable friction forces arise on the contact surfaces.
At the beginning ¢f the reduction zone these friction forces are direct-
ed against the motion cf the working roll, whilst at the end, on the
other hand, they act in the same direction as this motion.

Consequently, at the beginning of the reduction zone, for the first
pair of rolls the resultant P, of the pressure, exerted by the support
roll on the working roll, is inclined against the direction of the motion
of the metal {Fig. 259); the force P,, for the second pair, is inclined
in the direction of the moticn of the metal. The same is true for
the forces Q, and Q,, applied to the working rolls from the support
roll. Tf the friction in the bearings of the working roll is neglected,
then these forces have the same moment about the axes of the working
rolls as do the forces P, and P,. Furthermore, the forces ¢, and Q.
intersect the forces P, and P, at the same points as do the forces
T, and T, constituting the reactions of the bearings.

The angle of inclination 0, of the force P, to the line connecting
the centres of the working and support rolls can be found from the
equation of moments:

Pir sin (61— ﬁi) = 01 (r sin Y1 -+ m) (VII1.04)

where B is the angle characterizing the location of the point
of application of the force P,
y; is the angle of inclination of the force @, to the line
wY sup
m is the lever arm of the rolling friction.
The angle v, in this equation can be found approximately from the
condition at which the slipping of the working roll on the support
roll will take place:

tany; ~u, (VIL.105)

where p, is the coefficient of friction when the working roll siips
over the support roll.
For the sake of simplicity in the calculation it is assumed that

Py=(Q, tany; = siny,
then from equation (ViI.104) we obtain

sin0, ~ sin +p, —{—% (VII.106)
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The force T, is determined as the projection of the forces P and

Q1
Ty=P;sin0;-}Qqsiny; =~ P1 (sinﬁ—}— 2y +%)
The direction of the forces applied to the second pair of working

rolls is found in a similar manner, putting 7y = — 7.
The angle 0, is then found from the equation

T2=stinez+025in'Y2

Making the same assumptions as in deriving equation (VII.106),
we obtain

KL NN |- (VIL.107)
Then the torque required to drive the support roll

Mgup = Q2 (Rsup sin yy +m) — Qq (Reup siny,—m)  (VIL.108)

where the angles y, and 9, are found from equations (VII.107) and
(VII.105).
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Forces During Cross

and Helical Rolling

1. KINEMATICS OF CROSS ROLLING

During cross rolling as well as during helical rolling the reduction
is carried out by making the contact surfaces of the rolls or some other
too!l approach each other as the body rotates whilst being shaped be-
tween these surfaces. In the case of cross rolling this approach takes
place as a result of the relative displacement of the tool and the body
being shaped in the direction . perpendicular to the axis of rotation
of the latter. During helical rolling, also called skew rolling, simul-
taneously with the approach of the contact surfaces the body being
shaped also moves in the direction of its axis.

L.et us consider the kinematics of these two rolling processes.

The relative displacement of the tool and the body being shaped,
which for brevity will be called the blank, during cross rolling is
effected by three methods:

(1) by reducing the centre distance of the rolls (Fig. 260aq);

(2) by increasing the rolling radius of the rolls with their rotation
(Fig. 2600);

(3) by moving the blank perpendicularly to its axis in the direction
of the smaller distance between the surfaces of both rolls (Fig. 260c).



Fig. '260. Dillerent methods of cross rolling:

(«) reduction of the centre distance of the rolls; (b) increase in the rolling
radius of the rolls; (c) feed of the blank perpendicular to its axis in the
direetion of deereasing distance between the rolls
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The reduction of the blank to radius Ar, eflected by each
roll or plate, i.e., in the case of two rolls per half a revolution, and
in the case of three rolls per one third of a revolution, can be ex-
pressed by:

Ar=60 =4 (VIIIL.1)

mny;

where v, is the velocity at which the distance A diminishes be-
tween the axes of the roll and the blank (see Fig. 260a)
m is the number of rolls
ny; is the rotational speed of the blank.

Fig. 261. Determination of v4 for a variable rolling radius

This formula is also applicable for the cases of rolling shown sciie-
matically in Fig. 260b and ¢, if we substitute the approximate value
of v,

nn,. dR ,
for the case shown in Fig. 260b;
va=vssina (VIIL.3)
for the case given in Fig. 260c.
Here %is the derivative of the radius of the roll with respect

to its angle of rotation (Fig. 261)
vy is the feed velocity of the blank (Fig. 262)- _
a is the angle determining the positicn of the blank relative
to the rolls.
When the rotational speed of the blank is determined, it is neces-
sary to consider the slipping taking place along the contact surfaces
of the rolis and the blank. The magnitude of this slipping is usually
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given by the tangential slipping coefficient:
N :'le,l (VIIL.4)

where vp; is the peripheral velocity of the blank at the section pass-
ing through the axes of this blank and the rolls
v, is the peripheral velocity of the rolls.

Fig. 262. Determination of v, when a blank is fed in lateral
direction

If we assume that at this section, where the velocity of the blank
is vy, its radius equals rp;, then the rotational speed of the blank
is given by

", :r%'mn, (VIIL5)

wherc R, is the radius of the rolls
n, is the rotational speed of the rolls.

The first attempt to determine the coefficient of slipping during
cross rolling was made by [. Pobedin and S. Granovsky. Subsequent-
ly this problem was considered by P. Teterin, P. Severdenko and
L. Fyodorcv. These authors arrived at different results depend-
ing on the direction of the velocity vector of the point A of the
blank where it touches the roli (Fig. 263). In the writings of 1. Pobe-
din and S. Granovsky, and also in those of P. Teterin this vector is
directed tangentiaily to the contact surface (Fig. 263a), whilst in
the writings of P. Severdenko and L. Fyodorov it is directed perpen-
dicularly to the radius of the blank (Fig. 263b). As a result of this
the character of the slipping of the metal along the surface of the
rolis is different. In the first case, for a given rotaltional speed ny
of the biank. the velocity is

__ Ty AD
VA= "30 cos (@, T apy) (VIIL6)



(a)

(b)

Fig. 263. Resolution of velocities in determining the coefficient
of tangential slip:
(a) correct; (V) incorrect
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whilst in the second case (Fig. 263b) it is

v = cos (a, -+ ay) (VIIL7)

where a, and a3, are the angles characterizing the location of
the point A on the blank and on the roll
(Fig. 263) respcctively.

It follows from these equations that in the first case (Fig. 263a)
the velocity v, decreases in the direction from the point B to the
exit, whilst in the second case (Fig. 263b) it increases. If we assume
that a neutral point exists on the contact surface, where the metal
does not slip along the roll, then in the first case the velocity of the
blank at the point B must be higher than the velocity of the rolls,
whilst at the point C, conversely, the roll leads the blank. In the
second case (Fig. 263b) the character of the slipping is the same as
in longitudinal rolling, i.e., at the beginning of the arc of contact
the metal lags behind the rolls, whilst at the end of the arc of contact
it leads the rolls.

In order to shed some light on this problem, let us reconsider it,
starting from the condition that the volume per second of the metal
passing through each meridional cross section of the blank remains
constant, beginning from the point B and {inishing with the point (.
The condition for the volume of the metal per second to remain con-
stant can be expressed by the following equation for a rotating body:

OBwp--0Cw¢ == r oy == const.

where g, o¢ and w, are the angular velocities of the sections
characterized by the radii OB, OC and
ry respectively.
Thus, from the condition that the volume of metal per second
remains constant, 1t follows that

ryWy = vy = const. (VIIL.E)

i.e., the peripheral velocity over the entire arc of contact BC must
be constant.

Taking into consideration the fact that the absolute velocily of
the point A must be directed tangentially to the contact surface of
the rolls (Fig. 263a), we obtain

Ut -
U,ilim (VIIIS))

Since according to equation (VIII.8) v == const., the velocity
of the blank at the point B is a maximum, whilst at the point C,
where v, == v, it is a minimum. This serves to justify the results
of P. Teterin relating to the nature of the slipping of the blank.
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We shall assume that in cross rolling, as in longitudinal rolling,
there exists a neutral point on the contact surface, where the metal
of the blank moves with the same velocity as the rolls. Let us suppose
that this point coincides with the point A (Fig. 263a); then from the
results obtained above

Vg = Uy €05 (0, + ap;)
Hence, according to equation (VIII.4),
Me = ¢os (ar + ap;) (VIIL.10)

Experimental investigations into the coefficient of tangential
slipping during cross rolling were carried out by V. Smirnov. Accord-
ing to these investigations, in the case of hot rolling of cylindrical
blanks at 700 to 1,200°C, the coefficient of slipping lies within the
limits 0.9 and 0.95.

2. KINEMATICS OF HELICAL ROLLING

The motion of metal in the direction of its axis during helical
rolling is brought about by several methods. Cf these the following
are most widely used:

(1) arrangement of the rolls at a certain angle tc the blank
(Fig. 264a);

(2) displacement of the axis of the blank relative to the plane
passing through the axes of the rolls (Fig. 264b).

When the rolls and the blank are parallel to cach other, the motion
of the metal in the direction of its axis can be secured by applying
an axial force to the blank, or by providing the roll surfaces with
helical grooves.

In the case where the rolls are set at an angle to the blank to be
rolled, the components w, and u, of the peripheral velocity of the
rolls in the tangential and axial directions are (Fig. 264a):

w,:v,cosﬁ:g—onﬁ’x cosf (VIII.11)
Uy =, sin =3 R sinB (VIIL.12)

where v, is the peripheral velocity of the rolls
f is the angle between the axes of the rolls and the blank
rn is the speed of the rolls, rpm
R, i1s the radius of the ro¢ll in the section z-z under con-
sideration.
In tube rolling mills consisting of two disks which rotate in the
same direction (Fig. 264b) the tube being rolled receives a transla-
tional motion as a result of the rolling plane being displaced relative
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Axis of tube
being rolled

) 1_/«:;(

Fig. 264. Resolution of velocities in helical rolling:
(a) mill with skew rolls; (b) disk mill

28—662
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to the axes of the disks. We denote the value of this displacement.,
i.e., the distance between the rolling plane and the axes of the disks,
by a. The angle between the axis of the blank and the plane perpen-
dicular to the axes of the disks is denoted by B (Fig. 264).

The velocity of the point A located, say, on the surface of the right-
hand roll is denoted by v. Let us resolve this velocity into three nrutu-
ally perpendicular directions, onc of which is taken as the direction
of the axis of the blank.

Alter we subtract the slipping between the disks and the blank.
the component w of the velocity v represents the peripheral velocity
of this blank. This projection equals

Wy == Up COS @
or
w,:%cos ¢ (VIIL.13)
where n is the speed of the disk in revolutions per minute.
The component u, causing the translational motion of the blank,
is directed along the axis of the blank. Obviously this component is

Up=v,sin ¢ cosf (VIIIA4)
From Fig. 264b
sin =% (VIIL.15)
Then equation (VIII.14) assumes the form
u, =3 acos P (VIIL16)

It follows f[rom this equation that all the points of the disk which
touch the blank in a plane parallel to the axes of the disks tend to
impart a translational motion to the blank which does not vary with
the course of its motion.

In the case of conical rolls, the translational motion of the blank
being rolled can be achieved by one of the methods previously con-
stdered: by arranging the rolls at an angle to the axis of the blank
(Fig. 264a), or by displacing the roll axes relative to the plane pass-
ing through the axis of the article being rolled (Fig. 265). In the latter
case the points of contact with the metal are [ocated on the genera-
trices of the coneol the rolls which intersect with the axis ol the
blank; this results in maintaining the axial component of the velocily
v sin B.

In reality the translational motion of the blank during helical
rolling, when passing through the deformation zone, varies consid-
crably as ils cross-sectional arca is reduced.

If we neglect the possible variation in the density of the rolled
metal, then the translational velocity of the individual cross sections
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is given by the equation

Quy= Quup== ... Qxliy (VIII.A7)
where Q4, Q,, ..., Q. are the cross-sectional arcas of the blank
Uy, Uy, ..., u, are the translational velocities of the cor-

responding sections of the blank.
For large reductions in the cross-sectional area of the blank in
the rolling process (in piercing mills, for example, the overall reduc-
tion ratio of the metal rcaches four and more) the translational

S

S

Fig. 265. Displacement of the axes of the conical rolls relative to
the axis of the article to be rolled necessary to obtain a transla-
tional motion:

I-I—axis of the blank; II-II—axis of 1he front roll; III-III-— axis cf
the back roll

velocitics of the blank at entry and exit will differ markedly. Since
the rolls tend to impart a translational motion to the rolled blank,
in accordance with equation (VIII.12) or (VIIT.16), a motion which
in mills with skew rolls varies slightly with the course of the motion
of the blank, and which in disk mills is constant, it can be seen that
slipping between the rolls and blank is inevitable.

The translational velocity of any cross section of the blank is thus

Ux = Nax xUr

where 14y . is the coefficient of axial slipping in the case under
consideration.
26%
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If we know the coefficient of axial slipping m4, at the exit section,
where the cross-sectional area of the blank is Qy, then from equation
(VIII.17) the translational velocity is

TN, naxu,% (VIIL18)
or, for mills with skew rolls,
uxznaxg—(;’msinﬁ% (VIIL.19)
and for disk mills
uxznaxg—onacosﬁ%; (VIII.20)

where () is the cross-sectional area of the blank at the exit
R, is the radius of the roll at the exit section.
According to experimental investigations into piercing mills,
the exit velocity of the blank is usually less than the axial vector

Ch———= - ——

D
A 8

; {

|

Fig. 2066. Variation of the translational velocity of different
sections of the rolled blank in piercing mills:

uo—velocity of the blank entering the mill; u,—velocily of the’blank™emere-

ing [rom the mill; AB-—the projection of the peripheral velocity of the

rolls on 1o the axis of the blank in a mill with skew rolls; CD—1he corre-
sponding projection for a disk mill

of the peripheral velocity at the scction, i.c., g << 1. Therefore,
over the entire deformation zone u, <7 u,, as shown in Fig. 266.

According to the investigations by N. Lomakin and A. Tselikov,
during the piercing of tubes 112 to 235 mm in diamecter in a 220
mill —the material being steels 1010, HIX15, 9A1T, 38XMIOA
and 30XT'CA—the coefficients of slipping were found to lie within
the following limits: m; == 0.6 to 0.92; 1., == 0.68 to 0.9.

Many factors have a marked effect on the coefficients of slipping,
in particular, the reduction ratio of metal, an increase in which
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results in a decrease in the coefficient of axial slipping (Fig. 267).
The position of the mandrel nose also exerts a certain effect: as
it moves forward the coefficient of axial slipping is reduced
(Fig. 268).

The most detailed investigations into the coefficient of slipping
have been carried out by S. Granovsky on a laboratory mill
(VNIIMETMASH), by picrcing tubes from a blank 40 mm in diameter
(}éeateg up to 1,250 to 1,300°C. The material of the blank was steel

T. 3.

~
]

1
N

N \\

D
39

\
M ~—~——

Coefficient of axial stipping 7),,
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~

2 3 4 5
Reduction coefficient A

Fig. 267. Variation of the axial slipping coefficient with reduction
ratio when piercing tubes of various outside diameters using
steel 1020 (N. Lomakin and A. Tselikov):

1—135 to 173 mm; 2—227 to 232 mm

From the data of these investigations S. Granovsky plotted graphs
showing the variation of the coefficients of axial and tangential
slipping with the angle of inclination B of the axes of the rolls to
the axis of the blank (Fig. 269); a number of other factors were also
studied. In these tests the coefficient of tangential slipping was
more than unity, whilst that of axial slipping was less than unity.
This indicates that the peripheral velocity of the tube at the exit
from the rolls is higher than the velocity of the rolls, whilst in the
axial direction, conversely, the tube lags behind the rolls.

Studying the angle of twist during piercing S. Granovsky arrived
at the important conclusion that, depending on the nature of slip-
ping of the blank along the rolls in the tangential direction, the
whole deformation zone can be divided into three sections. In the
two end sections at the beginning and end of the deformation zone
the blank leads the rolls, whilst in the middle section it lags behind
the rolls (Fig. 270). At the transition points, from the zones of for-



=~
Q

Advance of mandrel nose, mm

]
S8 \
E.S o ‘\
§3
3304
{5
3
S UZgg 80 700 120 740

Fig. 268. Variation of the axial slipping coclficient with the
advance of the mandrel nose beyond the middle zone of the rolls
when piercing tubes 135 to 232 mm in diameter (N. Lomakin

and A. Tselikov)
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FFig. 269. Variation ol cocfficients of tangential and axial slipping

with the angle of inclination p of the roll axes to the pierced blank
axis (S. Granovsky):

(a) langential slipping; (/) axial slipping
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ward slip to the zone of backward slip, the blank moves with a pe-
ripheral velocity equal to the velocity of the rolls, and the coellicient
of tangential slipping cquals unity.

g 14

S
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s 13

x

s Zone of

3 /2 forvard stip| 8 A

S WuiANg 277 v 7, 74@5’””’ 75 ]

2L Zane of ? 7

IE o backward slip 8
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Length of deformation zone, mm

Fig. 270. Variation of the peripheral velocities of the bhlank (A4) and the
rolls (B) over the deformation zone during the piercing process (3. Granovsky)
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)

Fig. 271. Determination of radial reduction during helical rolling

Ar

The radial reduction Ar of the blank effected per roll during helical
rolling—when the internal cavity is neither opened up nor widened —
is given by the equation

Ar=s;tana (VIIL.21)
¥
where sy is the axial displacement of the blank per revolution,
divided by the number of the rolls
o is the angle between the tangent to the generatrix of the
cone of the blank and its axis (Fig. 271).
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The quantity s, can be determined from the relationship between
the translational and rotational velocities of the blank:

— 12 6() (VIIL.22)

“nym

Sx

where iy, is the average number of revolutions of the given section
of the blank per minute
m is the number of rolls.
From equations (VIIL.11) and (VIIL.13) we find that

Ry-- I-l_(;iﬁ 30M;x - gl Neal cos P (VIII.23)
X X
for mills with skew rolls, and
PN COS ¢ . , .
Mo —%'ijch.%()mx:;%mxn cos @ (VIIL.24)

for disk wmills,
where mg, is the coelficient of tangential slipping for the given
section.
After substituting the values of n, and u, from equations (VI11.19}
and (VIIT.20) into equation (VIII.22) we obtain

5 R Q4 MNax tan ; or
Sy 27 B Un M (VIII.25)

for mills with skew rolls, and

re Q1 cosfP gy . 9y
s 2 Gl (VILL.Z6)
for disk mills.

Substituting the value of s, into equation (VIIL.21), we find Ar.
The problem concerning the calculation of Ar when in the rolling
process the internal cavity is either opened up or widened, as a result
of the wall being reduced between the rolls and the mandrel. will

be considered below.

3. DETERMINATION OF THE CONTACT SURFACE
DURING CROSS AND HELICAL ROLLING
IN THE ABSENCE OF A CAVITY

When a body of cylindrical form is cross rolled between smooth
rolls, the contact surface can be calculated as the arca of a rectangle
the fength of which equals the length of the rolls or that of the article
being rolled. The width is dependent on the magnitude of the
radial reduction Ar, as well as on the radius r of the blank and the
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radius f2 of Lhe rolls. IFrom Fig. 2720 with sufficient aceuracy for prac-
Lical purposes, we can assume that AB =~ AC.
Then

AB =~} (ry ArE—(r-BOY? VYV REZ(IR=BCYE )

If we negleet the squares of the quantities Ar and BC in this equa-
tion, we obtain

. rAr

~ 1/ 2hr (VIII.27)

Using this equation we can find the ideal width of the contact arca.
Its actual width will be a little larger as a result of the metal being

and

Fig. 272. Deformation during cross rolling

displaced to the other side of the line connecting the axes of the rolls,
called the fin, and also as a result of the local elastic compression
ol the rolls and the blank being rolled.

The fin is apparently explained by the fact that at the point B
(Fig. 273) the peripheral velocity of the rolls is somewhat higher
than the velocity of the blank, and consequently the rolls tend
to push out the part of the rolled metal close to this point, with
an angular velocity slightly higher than the velocity of the
remainder of the blank. The effect of the fin on the contact surface
was first noticed by I. Pobedin and S. Granovsky. They measured
the dimensions of the imprints left by the rolls on a large number



442 FORCES DURING CROSS AND HELIICAL ROLLIN

of cylindrical blanks, which during rolling were stopped under
different conditions. According to the data provided by them, the
ratio b, : b, (Fig. 273) ranges from 0.35 to 0.75.

We may, however, assume that these results giving the value of
the fin are somewhat overestimated, since in the case where the
rolling is suddenly stopped the rolls leave an imprint whose area
is larger than the actual contact surface, owing to the recoil of the
rolls after they have been stopped, i.c., a rotation through a very
small angle in the opposite direction.

Fig. 273. The cffect of fin on the contact surlace

Let us now consider the problem concerning the effect of a local
elastic compression of the blank and the rolls on the contact
surface. The effect of this factor can be considerable in the case
of rolling with small radial reductions Ar and high specific pressures
(in particular, during cold rolling).

We denote the local elastic deformation of the roll in the radial
direction by A, and that of the blank by A.. For the blank to receive
a permancnt reduction by the required amount Ar, it is necessary
to account for this by approaching the roll to the blank by an amount
equal to the sum of these deformations, i.c., Ay - Ay; the centre
of the roll is then displaced from the point O; to the point O,
(Fig. 274). As a result of the clastic compression the length of the
line of contact is increased: its start is displaced from the point
A4 to the point 4., and the contact segment B.C emerges on the other
side of the line connecting the centres of the roll and the blank.

Let us first find the extent of the contact segment A-B, ~ b,.
From the diagram shown in Fig. 275 the length of the segment b,
can be expressed as:

b= VYV R*—(R—DF2=V (r+Ar2—(r--Ar—EF)?
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Fig. 274. Contact between the roll and the blank during cross
rolling taking account of eclastic compression of roll and blank

Fig. 275. Contact hetween the roll and the hlank during cross
rolling
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After removing the parentheses we neglect the squares and products
of the quantities DF, EF and Ar in view of their smallness in
comparison with R and r. Also noting that

.DF+EF: Ar+A1+A2

we obtain

b, N]/ R (Art Ayt Ay) (VIII.28)

In an analogous manner we can find the length of the contact seg-
ment located on the other side of the line connecting the centres of
the roll and the blank, i.e., the segment B.C (Fig. 274), making
use of the diagram shown in Fig. 275:

by=B,C ~ ) R*—(R—DH)*=}r"— (r—GH)?

If we neglect the squares of GH and DH and note that DH + GH =
A1 - Az, then

by ~ ‘/ZR’ (A Ag) (VIIL.29)

Deformations A, and A, can be found from the well-known results
in the theory of elasticity, concerning the compression of two cylin-
ders. If we neglect the fact that in the given case there is no symmetry
in the compression of these cylinders about the line connecting
their centres, and also assume that when the tube is rolled it closely
fits the mandrel and that the deformation of its wall is very small,
then the deformations A; and A, can be expressed as:

1—
Ai=2g :rEill ]l
s f (VIII.30y
A, —2g 1= |
2= 7w, )
where q is the pressure per unit length of the cylinders

being compressed

uy; and E, denote Poisson’s ratio and the modulus of elasticity
of the roll

o and L. denote Poisson’s ratio and the modulus of elasticity
of the blank being rolled or of the mandrel when
a thin-walled tube is rolled.

We express the quantity ¢ in terms of the specific pressure on the
contact surface:

q=2b,p
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and substitute the values of A; and A, from cquations (VIII.30)
into equation (VIII.29). Then

by~ 8p (1=K +1’i-“§> Ar (VIIL31)

nky, ' ak, )R-t

From equations (VIII.28) and (VIII.29), taking into consideration
the elastic compression, we can express the overall width of the con-
tact surface as:

b—b +b2~]/z”’ LB by (VIIL.32)

where b, is given by equation (VIII.31).

When bodies having the form of a cone or a sphere are cross rolled,
the contact surface is determined in a similar manner, by dividing
the given body into a number of segments and calculating Ar, and
b, for each of them. The contact arca is then

Fe Y e g (VILL.33)

where Al is the length of the segment at the boundaries of which
the widths of the contact arca are b, and b,.4;.

The contact surface during helical rolling can also be calculated
from this formula, with the only dillerence that in determining
b, Isee equation (VIII.27) or (VIIL.32)] the quantity Ar should be
found from formula (VIII.21).

4. DETERMINATION OF THE CONTACT SURIACE
DURING THE HELICAL ROLLING OF HOLLOW BODIES

To determine the contact surface during the lelical rolling of
hollow bodies two different cases must be distinguished:

(1) rolling without a mandrel, or with a mandrel when the metal
is in close contact with the mandrel over its entire surlace;

(2) rolling with a mandrel, bul with the metal being in contact
with the mandrel only at points opposite the poinls of contact of
the blank and the rolls.

The fundamental diffcrence between these two cases of rolling
is that in the first case reduction is effected only by the rolls, whilst
in the second case the mandrel participates in the reduction of the
metal, playing the same part as the internal roll during ring rolling
(Fig. 276).

These two cases of rolling are differentiated by the pressure of the
metal on the rolls and by the resistance of the tube wall to flexure.
If the wall thickness of the tube is considerable and the pressure
applied to the metal being rolled by one of the rolls is transmitted
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to the other roll without the assistance of the mandrel, then the
rolling process corresponds to the first case. If the wall thickness is
reduced so that the tube begins to flatten as a result of the pressure

Fig. 276. Reduction diagram in the case of the helical rolling of
hollow bodies:

(a) reduction is effecled only by rolls (case 1); (b) mandre]l participaies in
reduction (case 1I)

exerted by the metal on the rolls (Fig. 2760), then the mandrel will
begin to take part in reducing the wall of the tube; this will corres-
pond to the transition from the first case of rolling to the second.

{

~hQ

Y \\
| N

M

h

Fig. 277. Determination of the force which flattens the tube

The criterion for this transition is given by the resistance of the
tube wall to flexure. The force ¢ per unit length of the tube which
causes plastic flexure of the tube wall, can be determined from the
equation of equilibrium (Fig. 277):

q do-t-h
5 X g 2M

where d, is the outer diameter of the tube
k is the wall thickness
M is the maximum bending moment of the tube wall.
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In the case of a large degree of flattening the value of this moment
is found from the equation of plastic flexure:

0 h?
M = i

from which the force required to flatten the tube is

¢~ Zal? (VIIT.34)

dy- h

or the total force

Pﬂ%

where [ is the length of the section of the tube subjected to the
action of the force ¢
a is the assumed overall length of the outer regions involved
in the flexure of the tube wall.

The contact surface in both cases of rolling considered is found
to be dependent on the radial reduction effected by the roll whilst
the blank is rotated.

We denote by s, the displacement of an arbitrarily chosen section
0-0 of the blank per half a revolution in the axial direction (for
a mill with two rolls) over the region I (Fig. 278). To determine
the radial reduction carried out by the roll in the section z-z,
we assume that the volume of metal per second passing through any
meridional cross section during this half a revolution of the blank
remains constant. If we neglect the deformation of the blank in the
direction of its axis during this period, then we can write the equation

ABow = CDo = const.
where @ is the mean angular velocity of the given section.

It follows from this cquation that for the first case of rolling the
radial reduction elfected in the section z-z can be expressed as:

Ar=AB—CE
or
Ar=ro—Tio— (Fox—Tix) (VIIL.35)
where r,o, 7ox are the outer radii of the blank at the scclivns
0-0 and z-x

rio, Tix are the inner radii.
Taking into account that

Too—Tox=3Sx laN 0y Tix—Tijo =5 tan y,
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where o, and 7y, are the angles between the axis of the blank and
the tangents to the outer and inner surfaces
of the blank respectively,

we obtain the formula suggested by the author in 1937:

Ar-=sy (tan yy-i- tan ay) (VIII.306)

The value s, in this formula is determined from equations (VIIL.25)
and (VIII.206) or (VII1.22).

_ Region I Region I7
0oz
a.r o ay
777 777777)
7
’}’ { |-
L
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e /
Z L7 77777777

17
sae b
v x 0y
Fig. 278. Determination ol the radial reduction in the case of helical rollinw

In a similar manner we can find Ar at the beginning of the sccond
region of deformation, where an increase in the outer radius takes
place, but the flattening produced by the rolling has not commenced
yet.

In this case the difference ol the outer radii which appears in
equation (VIII.33) is

Too—Tox = — §, lanay,

Then the radial reduction for the second section is
Ar=s, (tany, — lan ay) (VIII 37)

where s, is the axial displacement of the blank per revolution
divided by the number of rolls located in the second
section (Fig. 278).

We substitute the value of Ar obtained into equation (VITT.27)
or (VIII.32) and find the quantity b; then from equation (VIIT.33)
we calculate F.

At the end of the second section, when the wall thickness is reduced
so much that flattening of the tube takes place, the radial reduction
effected by the roll should be determined from the conditions asso-
ciated with the second case of rolling. As mentioned above, the fea-
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ture of this case of rolling is that the mandrel begins to play the same
role as the internal roll in ring rolling.

The radial reduction Ar, effected by the roll, the value of which is
needed to determine the contact surface by substituting in equation

Fig. 27%. Reduction of the tube wall between roll and mandrel

(VIIL.27) or (VIIL.32), is in this case determined with the following
condition (Fig. 279) taken into account:

A7'1' - Ar!r)l - Arnmn (VIII(_))S)

where Ary,; and Ar,., are the total reduction and the reduction

effected by the mandrel respectively.

The value Ars,; in the right-hand side of this equation is found

from equation (VIIL.37), whilst Ar,,, is found from equation
(V.30). whence it follows that

Al = 5B P2 (VIIL.39)
=I'i’"man
where r; is the inner radius of the tube
Fwan 18 the radius of the cross section of the mandrel
bman 18 the width of the contact surface hetween the mandrel
and the tube.

The quantity 0,4, is determined frow the condition that the pres-
sure on the mandrel is equal to the pressure of the metal on the roll
minus those forces which are transmitted through the tube walls to
the other roll, bypassing the mandrel.

If we assume that the specific pressure on the roll and the mandrel
is the same, then the width of the contact surface on the roll, b,,
and the corresponding width on the mandrel, b,4,, should be deter-

1/3 20- 662
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mined from the equation

bman == br_% (VIII40)

where p is the mean specific pressure
q is the force necessary to flatten the tube, as given by equa-
tion (VIII.34).
Substituting this value of b,,., into equation (VIIL.39), we obtain

Arpan .. [ Tman (b _—> (VIH/{“

2rirman

Taking into account that from oquation (VIIL.27)

Ar, = '°b2

we have, by substituting the values of Ar, and Ar,,, into equation
(VIII. ))(S)

R-- ’ob A’to{ "i—Tman /b q

ZH 2"i7‘mnn K "_7

Hence

=17 B/J+l/< ~7) \1)>+[Ar’°‘ H( > '*b’

(VIIL.42)

where

. ..
R-ry B_’z_’mun

A =
2Rr, 2rirman

If we neglect the effect of the stiffness of the tube wall and assume
that ¢ == 0, then this equation assumes the same form as the equa-
tion (V.31) derived earlier for the calculation of the contact surface
during ring rolling.

The problem of determining the contact surface during the helical
rolling of tubes on a mandrel of a plugging mill was considered in
detail by V. Smirnov, whilst K. Gruber has done the same for ex-
panding mills.

5. DETERMINATION OF THE STRESSES ON THE CONTACT SURFACE

In cross and helical rolling of solid or thick-walled bodies the con-
tact surfaces are usually small in comparison with the distance be-
tween them, and accordingly the resistance to deformation, to a large
extent. depends on the influence ol the outer zones.
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We shall lirst consider the case of the compression of a cylindrical
body between parallel plates. The solution of this problem. in a
closed form, was first given by- A. Tomlenov, using the results of
work by V. Sokolovsky and R. Hill.

This case of deformation is very close to cross rolling, if for sim-
plicity we assume that the line of contact of the metal with the roll
is rectilinear, and if we consider the process of cross rolling to be the
result of the elementary processes of compression as the body turns
through a small angle.

T

< ¢

SHI IV

Fig. 280. Slip line field for a cylinder being compressed

Lf the strain in the direction of the axis of the eylinder is neglected
the stress state for this process of compression can be represent-
ed by a field of slip lines (Fig. 280) consisting ol an equilateral tri-
angle, two fan zones and a curvilinear four-sided ligure. The coordi-
nates of the node points of this field can be determined by a number
of different methods described in the literature. The boundaries of
this field in a rigid-plastic material will determine the boundaries
of the plastic region. In the case of a real material the boundaries
of the field will determine the boundaries of the zone in which elastic
deformations are very small in comparison with plastic deformations.

It should be noted that the field under consideration satisfies the
kinematie boundary conditions. il we assume that the zone of sticking
extends over the entire length ol the are of contact (this applies in
the case where a long blank with a small contact teneth is deformed).
Indeed, the magnitude of the displacement of the particles on the

20 #
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contact surface is constant for the deformation desceribed by the field;
the components of displacement are v, const. and v, - 0, which
corresponds to the case of sticking.

To obtain the magnitude of the speciftic pressure on the contact
surlace, let us consider the equilibrium of the hall of ¢he biank locat-
ed on the right of the line 7-I. From the condition of equilibrium
we have

oydr=20 (VIII.43)

E=1 e

where oy, is the stress in the section /-7
ris the radius of the blank.
To determine the stress o, let us consider the two orthogonal slip
lines AB and BC of Fig. 280; applying the lirst theorem of Hencky,
we obtain

Oy— 0= — 2]\30,_.\5
‘ A (VIIL.44)
Op— O¢ = 2]‘:“8(}

where 0,, o5 and o, are the mean stresses at the points A, B
and C
k- is the resistance to plastic deformation in
pure shear
cap and ohe are the angles of rotation of the slip lines
between the points A and B. and B and
C respectively.
Since the slip line BC forms an angle of 457 with the axis of the
roll, the above angles of rotation are equal to the angle f between
the slip lines DB and DE:

Upe= — U p= ﬁ'

Then from equations (VIIT.44) it follows that

04— 0¢ =2k (ape—aap) = 4hP

The mean stresses in these equations are determined from the
plasticity equation:

oa p—k , -

(VIIL.45)

GC — Gy “f‘k:

.

i

Hence it follows that for x = 0 to r —

oy == p— 2k (1 +2p) (VIIL.46)
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Noting that on the section a:-~~r—% to r

o, = p—2k

we obtain from equation (VIII.43)

Sp—2k)y - { [p—2k(1- 2B))dz =0

We integrate this equation and then solve it for p:
b

r——

2

p::t2l-r[_1—';—% { paz| (VIIL.47)

0

In order to integrate equation (VIII1.47) it is necessary to find
p=:f(x). As shown by the investigations by V. Lugovskoi into
the slip line field, this function can be expressed in the form of
a series:

r—z

2 LT = Ao (2F)— 215 2B) + 215 (2B) + 205 (2B) + ... (VIIL.48)

where b is the width of the contact surface (see Fig. 280)
I, (2B) is the n-th order Bessel function of the imaginary argu-
ment 20.
Following the suggestion of V. Lugovskoi, we can approximate the

relation (VIII[.48), within the limits 0 <P < g , with accuracy up
to 3%, by the function

2 12T et B (VIII.49)

After taking logarithms we obtain the required expression:

p=0.6251log, 2 —= (VIII.50)

Substituting (VIII.50) into (VIII.A7) and integrating, we obtain
after certain transformations

p==2k (1 25 Joge - +1.25 4= — 0. 20) (VIIL51)

The value T as a function of ——, calculated from this equation,

is shown in Fig. 281.

17y 29—662
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The lower boundary of applicability of this field is the value
2r
_b- 2
vertices and p:-=2k. The upper boundary is the value of ‘b—' deter-

=1, when the triangles under the contact surfaces touch with

nmined from the equation
. Y 2r 9=z b 9r . R =
p:Z/v(l.Zo log, 2=+ 1.25 27—0.33) =2k (1 4 7) (VIIL.52)
where in the right-hand side ol this equation there is the value of the
specific pressure corresponding to a rigid die being indented into
a half-space, for which the character of the field is altered.

30
~257(
i
.
20
3 N
1o 0725 05 075 10

b/2r
Fig. 281. Variation of % with —2[),—., as given by equation (VIIL.51)
suggested by V. Lugovskoi

2r

bmax
b

=8.5. Thus formula

(VIIL51) is valid within the limits 1<2-<8.5; when == 8.5

the specific pressure is determined from Prandtl’s formula:
p:2k<1+%>z5.14k (VIII.53)

A. Tomlenov has suggested that the value P over the interval

Solving this equation we find that

=0 to —"—4[— be approximated by the function
= —0.53540.6n—0.065m> (VILI.54)

r—zx
b ’

where n=2
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whilst over the interval B:% to % it should be approximated
by the function .
p=10.15-4-0.21—0.007n* (VIIL.55)

As a result of these approximations he has obtained the following
formulas for determining the specific pressure:

~ 26 [0.5 54 0.65-—0.04 (%})2] (VIIL.56)

2r

2 .
T 3,64
b

pa 2k [ 1.3 5-0.2 5 —0.004 (ib’_)z] (VIIL.57)

for the interval 1 =

9
for the interval 13.6/1<::‘Tr<8./1.

2r . .
For values T>8‘4’ which corresponds to Bray:-=75.8°% a dis-

placement of the metal close to the contact surfaces begins, and
in this case the pressure of the metal on the rolls should be determined
from the formula (VIII.53).

Values of ;;t as a function of %, calculated from formulas
(VIII.56) and (VIII.57), are presented in Table 21.
Table 21
The Specific Pressure % and the Maximum

c
Tensile Stress 2—;’ During Cross Rolling,
v

Calculated from Formulas (VIII.56) and (VIIL.57)

. [
% B, degrees -% —Z—Z-
1.0 0 1.0 0
1.6 15 1.17 0.35
2.44 30 1.43 0.61
3.64 49 1.80 0.75
H.42 60 2.08 0.92
8.15 75 2.04 1.08

12.40 90 2,97 —

Applying the method just considered to determine the effect of
the outer zones on the specific pressure, and using equation (VI11.45),
we can also establish the stress distribution over the entire meridio-
nal cross seclion of the blank.

29%
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Fig. 282. Stress distribution during cross rolling when 5:0.123;
p=175° (A. Tomlenov)

Fig. 283. Slip line field for metal being rolled in a three-roll mill
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These calculations show that tensile stresses arise in the middle
portion of the blank, whilst compressive stresses occur close to the
contact surfaces (Fig. 282). The maximum values of the tensile
stresses are given in Table 21.

When metal is rolled between three rolls, the layout of the plastic
zones corresponds Lo the field shown in Fig. 283. Such an arrangement
of the plastic zones, as in the case of the field shown in Fig. 28(,

Fig. 284. Slip lines emerging from the contact surface to the
cylindrical surface of the blank when —2br— = 0.25 (a—p: k diagram)

(M. Brovman)

satisfies the kinematic conditions on the boundary ol the slip lines
and, by virtue of a well-known theorem in the theory of plasticily,
gives the upper value of the stress on the boundary.

In fact, the normal and tangential displacements on the contact
surface are v,=const. and v; 0 respectively (which corresponds
to the casc of sticking), whilst the non-plaslic zones are pressed oul
from the centre as a rigid body.

The method of calculating the contact pressure for this case of
rolling is discussed in a work by A. Tselikov, V. Lugovskoi and
E. Tretyakov.

[n choosing formula (VII[.53) Prandtl assumed (hat the slip
lines, whilst emerging from the contact surface to the free surface,

rotate through an angle equal to —.f- (see Fig. 26a). But owing to the

fact that in cross rolling the [ree surface is not a plane but the sur-
face of a cylindrical blank, the angle of rotation of the slip line is
somewhat smaller. The above slip lines have heen constructed by
M. Brovman; using them, he investigated the effect of the factor
just mentioned on the contact stresses (Fig. 284). Since the slip
lines do not conform to a plane but to a cvlindrical surface
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the specific pressure is slightly reduced; at the middle of the
contact surface the pressure decreases a little more than at the
edge, owing to a somewhat smaller angle of rotation of the slip
line when it emerges to a f{ree surface. Il we assume that for

b

- & 0.25 the flow of the metal occurs close to the contact surfaces,

Z

then, as follows from Fig. 284, the specific pressure in this case is
p=(3.92 to 4.62) k
i.c., approximately 0.76 to 0.9 of the pressure calculated from
formula (VII1.53).
Results agrecing closely with this are also shown by the curve of
Fig. 281.

6, DIRECTION O THE FORCES ACTING ON THE ROLLS
DURING CROSS ROLLING

Depending on the required change in the shape of the component
being rolled, the axes of the rolls during cross rolling can be set
either parallel to the axis of the component (IYig. 285) or inclined to

Fig. 285. Direction of the forces acting on the rolls during cross
rolling when the axes of the rolls and the blank are parallel

it (Fig. 286). But at the same time they must be located]in the merid-
ional planes, i.e., in the planes passing through the axis of the com-
ponent being rolled.

In both cases of rolling the direction ol the forces acting on the
rolls is determined from the condition of equilibrium of the blank



Fig. 286. Direction of the forces acling on the rolls during cross
rolling when the roll axes arc inclined to the blank axis in the
meridional plane

Fig. 287. Direction of the resultant forces applied to the rolled
metal during the cross rolling process
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being rolled. We replace the action of the rolls on the blank by cor-
responding forces: the resultant of the pressure of the left-hand roll
on the blank is denoted by P,, and that of the righ-hand roll by
P,. We assume that the point of application of these forces is located
in the middle of the segment b (Fig. 287).

In view of the fact that, apart {from the forces P, and P,, there are
no other forces acting on the blank, and that during the steady state
rolling process the blank moves uniformly, the vector summ ol the
forces P, and P, must obviously be zero. It follows from this thal
the vectors ol the forces P, and P, are equal and opposite. It follows
from the symmetry condition that the forces P, and P, must pass
through the axis of the blank.

The blank being rolled obviously exerts the same pressure on the
rolls as plates or rolls exert on the blank, i.e., P=P;,=P, (sec
Fig. 28)).

We denote the angle of inclination of the force P to the line con-
necting the centres ol the rolls by ¢, and resolve the force P into
horizontal and verlical components. The force acting on the roll
in the horizontal direction is then

X =Pcosg

whilst the force in the vertical direction is
Y =Psing

The angle ¢ can be determined from the quantity & calculated
previously
tan ¢ = - (VIIL.58)
The torque which must be applied to each roll to drive it, when
the friction force in the bearings is not taken into account, equals
(sce Fig. 285):
M = Pa

or

M=PP g p el (VIIL59)

2

The results just obtained are valid when the rolls are inclined in
the meridional plane to the axis of the blank (Fig. 286). Only in
this case the axial force is given by

U,~=Xsina (VIII.GO)

where a is the angle of inclination of the roll axis to the axis of the
component being rolled.



AND HELICAL ROLLING 461

The torque required to drive the roll is determined in this case
by the equation

M-=YR+X —;cos a (VIIL.61)

where R is the radius of the roll in the section where the resultant
of the metal pressure is applied.
Substituting the values of X and ¥ given above into this equation
we ohtain

M-=P <R sing + cos ¢ cos (1) (VIII.62)

[n a similar manner we can find the cquation of the forces and
torques required to drive the rol's when metal is volled between three

Fig. 288, Direction of the forces acting on the rolls during the
cross rolling of metal in a three-roll mill

or more rolls. In all these cases the direction of the forces is deter-
inined from the condition that the resultant of the pressure exerted
hv the metal on the roll is found on the line passing through the axis
of the rolled article and through the point where the resultant force P
is applied to the roll (Fig. 288).

20-662
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7. DIRECTION O THE FORCES ACTING ON THE ROLLS
DURING HELICAL ROLLING

There are two typical cases as regards the direction of forces during
helical rolling: the metal being rolled does not meet any external
resistance to its axial advance; and there is a resistance to the axial

Pcosypsince

Pcos el

Fig. 289. Direction of the forces acting on the rolls for helical
rolhng in the absence of external axial resistance. Force vectors
in the top left projection are scaled up

advance of the metal. The first case is possible when rolling is carried
out without a mandrel or when rolling is carried out on a long mandrel
which is free to move with the tube being rolled. The second case
occurs when rolling on a short mandrel set against a bar (piercing
or plugging milis).

The first case of rolling differs from the cases of cross rolling consid-
ered earlier in that the axes of the rolls are not located in the merid-
ional plane but make an angle p with it (Fig. 289). Because of this
inclination axial forces will act on the rolls. The magnitude and
dircction of these forces are determined from the condition that if
there is no external axial resistance to the motion of the blank, then
the resultants of the pressure of the metal on the rolls, i.e., the forces
P, must lie in a plane perpendicular to the axis of the blank. The
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projection of these forces on to the direction perpendicular to the
principal meridional plane, equal to Psin¢ (Fig. 289), provides
the tangential force Psin@cosf on the roll, as well as the axial
force P sin ¢sinf.

Fig. 290. Direction of the forces acting on the rolls of a piercing mill

If at the same time the rolls are set at an angle to the axis of the
blank in the meridional plane, then the total axial force on each
roll, from equation (VIII.60), is

U,=Pcospsina—Psingsinp (VIII.63)
The torque required to drive the roll is
M=Pr <R sin(pcosﬂ—}-%cos ¢ cos a) (VII1.64)

The second case of helical rolling, i.c., when the rolled metal is
resisted by a short mandrel sct against a bar, differs from the
case just considered in that additional forces parallel to the axis
of the blank act on the rolls. These forces are equal to the axial
force arising in the mandrel. If this axial force in the mandrel
is denoted by Upngn, then in a mill with two rolls the following
force acts on cach roll (Fig. 290):

_ Uman
T = —man

30%
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Then, from equation (VIIT.G3), the total axial force on the roll is
U,=Tcosa- P (cos¢sina—singsinf) (VIII.6H)

[f we use equation (VIII.G4), the torque required to drive the roll
can be expressed as:

M=P <R sin g cos f-- f,i cospcosa )--TRsinfp (VII.GO)

Let us consider the direction ol the forces acting on the rolls when
the axial displacement of the blank being volled is sccured not as

\bP.sv;n(go.xg)

Pcos(p+8)cosa

\

[ Peos(p+6)

iy

Fig. 291, Direction of the forces acling on the rolls during helical
rolling when the roll axes are displaced relative to the blank axis

a result of the rolls’ inclination to tive meridional plane, bhul as a re-

sult of their axes being displaced relative to this plane (sce Fig. 269).
In this case, when there is no axial resistance to the blank, the

force acting on the roll is made up of two vectors (Fig. 2910):

U, ~ Pcos(p-+0)sina— Psin(¢--0)siny  (VIIL.67)

where ¢ is the angle between the direction of the force P (vesultant
of the pressure of Lhe metal on the rolls) and the line
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connecting the centres of the rolls in the plane /-1,
which is perpendicular to the axis of the blank and
passes through the point A where the resultant of the
pressure of the metal acting on the rolls is applied

0 is the angle between the meridional plane //-11 drawn
through the axis of the blank parallel to the axes of both
rolls. and the line connecting the centres of the rolls
in the plane 7-1 or the plane I11-111

o is the angle of inclination of the axes of the rolls to the
axis of the blank

v is the angle between the axis of the blank and the genera-
trix of the cone of the roll which passes through the
point A.

The angles ¢. 0 and y can be found from the following expressions:

N b A
sing=— |

Y ¢ (VIIL.68)
sin 0 == _)[;e‘_d Jl

e—% sin (¢ -1-0)

: (VII1.69)

siny -
where e is the distance between the plane [/-I1 and the plane
drawn through the axis of the rolls parallel to the plane
11-17
{ is the distance from the vertex of the cone of the roll to
the point A.

It is of interest to compare this case of the direction of the forces
acting on the rolls with the preceding case (Fig. 289). If the forces
acling on the volls are projected on to the plane II17-171 and the
plane perpendicular to it, then the dircction of the forces can be repre-
sented by the diagram shown in Fig. 289. The angle p in the diagrain
in this case is analogous to the angle v, and is only located in the
plane perpendicular to the plane II7-I17. It can be determined
from the cquation

lsiuﬁ:aéﬂ;<%+%tau e) (VIIL.70)

II'in view ol the smallness of the angle 0 we assume that cos 0 =~ 1,
then f =~ y.

In this case the force on the roll is

U, ~Pcosgsina—Psingsir fp (VIIL.71)

The torque required to drive the roll is determined from equation
(VIIL.64)
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If on its way the blank meets a resistance in the form of a mandrel,
then the effect of the force 7 must be considered in calculating U,
and M, as was done in deriving equations (VIII.65) and (VIII.G6).

8. DIRECTION OF THE FORCES ACTING ON THE DISKS
OF PIERCING DISK MILLS

From the condition of equilibrium of rolled blank and mandrel,
considered above in the case of a piercing mill with skew rolls, it
follows that the force acting on the blank due to each disk can be
reduced to two resultant forces P and T, of which the first lies in
a plane perpendicular to the axis of the blank, whilst the second is
directed along its axis (Fig. 292).

Remembering that action equals reaction and that the blank being
rolled exerts the same pressure on the disks as the disks exert on the
blank, the pressure of the blank on each disk can also be expressed
by the two forces P and T (Fig. 293) which are equal and opposite
to the forces acting on the blank.

We resolve the forces P and 7" acting on the disks in three mutually
perpendicular directions.

The horizontal pressure exerted by the blank on the disks, perpen-
dicular to their axes, is:
on the first disk

X1:Px+Tx
or
X1=Pcoslpsinﬁ—|—g—cos[3 (VIIL.72)
on the second disk
Xo=P—T,
or
Xy = P cos Psin p— o cos (VIIL73)

where ¢ is the angle between the force P and the horizontal plane,
which can be determined (see Fig. 293) from the equation

tarnp:r—e- (VII1.74)
0

where ¢ is the distance from the plane of rolling to the point of
application of the resultant of the pressurc exerted by
the disk on the blank
ro is the radius of the blank at the section where the resultant
is applied.



Fig. 292, Direction of the resultants of the pressure and friction
forces applied by the rolls to a rolled blank in a piercing mill

Disk [ Disk 1]

P, — Peosyp
I

Fig. 293. Forces acting on the rolls in a piercing disk’ mill
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The vertical pressure is the same for both disks, equalling
Yi=Y,=P,
or
Yi=Y,=Psiny

The axial pressure on the disk is:
Zy==P,—T.=Pcos{cos B——sluﬁ (VII1.75)
on the first disk, and
Zy= P, Ty = Pcostpeos fot o sin p (VIIL76)

on the second disk.

Knowing the prgssure on the disks in all three directions we can
casily calculate the torque required to drive the disks. It follows
from Fig. 293 that the torque necessary to rotate the disks, neglecting
the friction forces in the bearings, is:

1111 = val COSs @ +‘ ‘\'1p1 sin [
or

M, 7Pplsm¢c0€(r1—r—P(a——e)cosﬂ,&m[SJ — (a+e)cosP
for the first disk, and

Moy = Y0, 08 (g — Nopo Sill @
or

Mo == Ppysin cos s -+ P (a )cosxpsmﬁ—i— (a—e)cosf

for the sccond disk.

[t follows from these equations that to drive the first disk, which
is on the entry side of the blank, a larger torque is needed than for
the second disk which is on the mandrel side.

9. EXPERIMENTAL DATA ON THE FORCES ACTING
ON THE ROLLS DURING HELICAL ROLLING OF TUBES

A number of experimental investigations have been carried out
during recent years into the forces and energy consumption during
helical rolling of tubes in tube rolling mills of various designs.

One of the first and most detailed investigations into the forces in
piercing mills under production conditions was made by N. Lomakin.
He studied the effect of diffcrent factors on the pressure exerted by
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the metal on the rolls, and on the axial force acting on the
mandrel when tubes 124 to 235 mm in diameter, and of different
steels, were rolled in a piercing mill "with rolls 860 to 920 mm in
diameter. Some typical data from thesc investigations are presented
in Table 22.
Table 22
The Pressure of Metal on the Roll and the Axial Force Acling

on the Mandre! During the Rolling of Tubes in Picreing Mills
(After N. Lomakin)

l)nm;nsiuns of Diame-
tube, mm ter of B Prossure of  Axial foree
wall Oll'lii.'i'lléll Steel [t:,'l":,]’ J{'v‘ m(vL\nl (mn (Il’l\lll}élll(ll'[lf].
. wva lank v ¥ BB Ons
dianeler  ypiorness 1:|I:l|| ' roll, tons tons
124 11 115 1010 1,225-1,240 77-80 15-19
153 12 150 1010 1,200-1,215 (G2-72 21-22
170 10 150 1010 1,225-1,230 65-71 34-30
230 13 2270 1010 1,200-1,220 108-115 —
131 22 130 X115 1,130-1,140 84-100 .
162 27 170 MxXis 1,120-1, 140 95-97 —
208 47 193 J0XTCA 1,220 77-89 -
235 29 222 10M 1,190-1,220 125-1%4 —

Analyzing the results of these investigations N. Lomakin noted
that, on average, the ratio of the axial force on the mandrel to the
pressure exerted by the metal on the roll is

U ‘
ya =~ 0.37

Experimental investigations into the forces arising in a piercing
mill are of great interest. Certain results of the investigations carried
out by A. Geleji and others are given in Table 23.

Table 23

The Pressure of Metal on the Roll and the Axial Force Acting on

the Mandrel in the Case of Tube Rolling in a Piercing Mill. Using
Billets of Steel Cr. 35.29 at Temperature 1.230 to 1.260°C

Diameter of tube, mm Pressure on the roll, tons .
Diameter of (“}]Xllﬁl”f(']'l{':l“
billet, mm auxili 4 and
external internal priucipal d(“,j}lli];;)ry tons
240-231 241 167 134 28 36
203 198 139 192 22 27

204 201 113 32 15 25
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The energy consumption in piercing mills was investigated ex-
perimentally by I. Fomichev, Y. Vatkin, M. Sonkin and others. The
results of the investigations by M. Sonkin are given in Fig. 294 in
the form of curves of specific energy consumption depending on the
reduction ratio in the process of piercing the blank into a tube.
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Fig. 294. Curves of specific energy consumption vs reduction
ratio for the piercing of mild steel blanks having diameters of
130 mm (Z), 170 mm (2) and 222 mm (3) using piercing mill 200

V. Osadchy and A. Gleiberg studied the distribution of the specific
pressure on the roll during the rolling of blanks in a picrcing mill.
According to their data the mean specific pressure during the rolling
of tubes of plain carbon steel was 7 to 13 kg/mm?, whilst for stainless
steel it reached 15 to 16 kg/mm?2.

Table 24

The Pressure of Metal on the Roll, the Power Used and the Axial
Force Acting on the Mandrel During Tube Rolling on an Elongator

Diamet({r of initial Dii\mdoterbr)f fin- . M
tube, mm ished tube, mm Taximum : aximum
Rgg}f' presst;x]-e Mapx()“"?el;_m pressure
on roll, . 0N man-
. ) R . ratio tons used, KW drel, tons
external internal external intcrnal
385 230 385 370 1.48 318 1,945 —
500 375 490 475 1.75 305 3,430 46
500 390 547 BES 2.0 290 3,000 60
620 435 615 600 1.9 35 3,810 4
625 100 638 435 1.87 303 2,550 44

Note. The material of the tube: steel JI; rolling temperature: 1,130 to 1,140°C;
diameter of the rolls: 730 mm; speed of rotation of rolls: 27.5 to 34 rpm.
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Experimental investigations into the forces in elongators during
the rolling of thick-walled tubes and tubes with walls of smaller
thickness were conducted by O. Plyatskovsky and others. Some
results of these investigations are presented in Table 24.
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Fig. 295. Variation of specific energy consumption with the

expansion factor of the outside tube diameter in the expansion

rolling of tubes with diameters 127 to 140 mm and wall

thicknesses 4.5 to 5 mm (7); 152 to 159 X 5 to 6 mm (2), and
219 X 8 to 10 mm (3):

K 100%, where Do and D, are the outside diameters of the tube

—_ Dl_Dn
D,

before and after expansion. Tube material: steels 1010, 1020 and 1035

lixperimental investigations into the forces in plugging mills were
conducted by V. Buryanov, V. Osadchy and others. They measured
the pressure of metal on the rolls under production conditions on
a plugging mill of tube rolling unit 400. Some results from these
investigations are given in Table 25.

The energy consumption during the rolling of tubes 127 to 249 mm
in diameter, made of mild steels 1010, 1020 and 1035, was investi-
gated by M. Sonkin. The results of this investigation are represented
in the form of curves of the specific energy consumption as it depends
on the pipe expansion factor (Fig. 295).

The forces arising in three-roll plugging mills working with a long
mandrel were investigated by P. Teterin, I'. Danilov and Y. Mane-
gin. During the rolling of tubes of low carbon steel and IIX15 steel —
73 t0 159 mm in diameter and with a wall thickness of 11 to 20 mm—
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Table 25

The Pressure of Metal on the Roll During Tube Rolling in a Plugging
Mill Following an Automatic Mill

Diameter and Diameter and

wall thickuess  wall thickness . Temperature of  Mean pressure
of initial tube,  of tube after Steel rolling, o of metal onroll,
i rolling, mm tons
242007 2H0 % T 10-20 860-835 18
242 517 254 17 10 1.000-485 2005
266 X7 280 3 7 20 870-830 14
268 > 17 2905017 20 1, 020-890 20
270 % 4> 27T W 4AD 20 1,070-1,040 20

the pressure exerted by the metal on the roll was found to be within
the limits 8.7 to 34.4 tons. Here the diameter of the rolls was 320
Lo 489 mm, the height of the swell was 8 to 12 mm, and the peripheral
velocity was 2 to 3.2 m/s.

The encrgy consumption in an exrpanding mill was investigated
by K. Gruber. During tlie expansion of mild steel tubes, from an
initial diameter of ~360 mm and a wall thickness of ~12 mm to
a linal diameter of ~450 to 460 mm and a wall thickness of ~9 inm.
the mean loading on the drive shaft was 480 to 570 kW at the roll
speed of 48 rpm. The temperatures at the beginning and end of Lhe
rolling process were 1,080 and 870°C respectively.

10. EXPERIMENTAL DATA ON THE FORCES ACTING
ON THE ROLLS DURING CROSS AND HELICAL ROLLING
OF SOLID COMPONENTS

The forces and energy consumption in mills for rolling spheres,
designed by VNIIMETMASH, were investigated by S. Granovsky.
I. Pobedin, V. Yefanov and others. According to these investigations
the maximum pressure exerted by metal on the roll during the
rolling of spheres of HIX15 steel, at a temperature of 850°C, was
within the following limits:

Diameter of sphere,

i (inches) Pressure, tons
28 (1 1/16) 6.5 to 10
53 (2) 16.5 to 22
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In the first case the diameter of the rolls was 190 to 220 mm, and
in the second it was 280 to 300 mm. The power consumed during the
rolling of spheres 28 inm in diameter, at a rotational speed of 150 rpm,
was 30 to 33 hp; during the rolling of spheres 53 mm in diameter. at
a rotational speed of 100 rpm, it was 230 hp.

The results dealing with the pressure of metal on the roll and
the power consumed during the rolling of miid steel spheres (for
ball mills) 80 mm in diameter are presented in Table 26.

Table 26

The Pressure of Metal on the Roll During
the Rolling of Spheres and the Power Consumed

Maximum pres-

Temperature of sure on roll,

rolliug, °C

Maximum power
consumed, hp

Lons
840 40 240
920 39,0 210
1,100 28.5 152

Nole, The speed of the rolls is 47 rpm.

Investigations into the forces and cicergy consumption in a three-
roll mill for helical rolling of periodic profiles were carried out by
G. Livshits, V. Anisiforov, I. Kazanskaya and V. Zhaveronkov.
Certain results of the investigations by V. Zhavoronkov into the
pressure ol metal on the roll during the rolling of blanks 10 Lo 50 mm
in diameter on three-roll mills 10 and 70 are presénted in Table 27.

Table 27

The Pressure of Metal on the Roll
During the Rolling of Periodic Profiles
in a Three-Roll Mill

The rednetion

Diameler of acler 6f blank . Pressure of

initinl blank, eter of “l,;Slk Steel metal on
min diameter, ---- roli, tons

dy

16 2.0 1IANY] 0.81
11 1.5 ilIN9 0.76
34 175 20 2.53
40 1.66 BB} 2.35
40 1.66 40NTI 5.30

20 1.47 A0 5.16




474

FORCES DURING CROSS

The forces arising in mills for rolling the teeth of gear wheels were
investigated by A. Kuzmin and M. Vasilchikov during hot rolling
of helical teeth with a modulus of 1.5 mm, of steel 40XH, with an
axial feed (using the har method) of 1 to 3 mm per half a revolution

of the blank (Table 28).

Table 28
Forces Arising During Hot Rolling of Gear Teeth

Diameter of

Pressure of

blank, mim metal on roll,  Torque on roll, kgm
23.4 0.38-0.55 73-127
38.4 0.6-1.1 82-148
52.6 0.75-1.15 30-140
66 0.73-1.1 70-122

Note,

Diameter ol the pitch circle of the
is 184 mm; the number of teeth, 115.

rolls

During the rolling of straight teeth with a modulus of 3 mm with
a radial feed (piece method),
width being 30 mm, the pressure on the roll was 0.75 to 2.2 tons,

the number of teeth being 45 and the

Table 29

Forces Acting on the Rolls During the Rolling of Screws
with Different Threads

Dimensions of

olls, n i _ Pressure
Type and dimen- rotls, m Né?tsorllflsl Tfj‘r‘gegf‘ of metal Torque,
sions of thread . (steel) blank, °C on roli, kgm
outside tons
diameter  length

Trapezoidal:

24 %6 181.5 75 Cr. 5 20 12.7 ~145

36 % 6 202 74 30 20 7-9.3 100-120
Semicircular 22x6 200 55 35 20 16-17 200-265
Trapezoidal:

36 X6 196 72 30 1,000 3.1-6.1  140-190

36 %10 181 74 45 1,000 3.4-3.9 98-62
Rectangular 57 X

< 6.35 168.5 80 30 850 3.1 35
Blank of hob cut-

ter
(t=95 mm) 220 110 P18 1,100 17.8 264

Ditto 220 147 Cr. 3 1,000 20.4 350
Semicircular 104 x

% 24 192 120 45 1,000 11 360
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whilst the torque on the roll was 85 to 195 kgm (the pitch diameter
of the rolls being 201 mm). The temperature at the beginning of
rolling was 1,050 to 1,100°C; at the end of the rolling process it was
850 to 950°C.

During gear rolling the magnitude of the feed has an important
effect on the force; as the feed increases the force increases as well.

The forces arising in mills for rolling screws with a large pitch, both
during hot and cold rolling, were investigated in detail by M. Volkov
and I*. Kirpichnikov. A few of the results of these investigations, for
rolling screws on a two-roll mill with an axial feed, by a method
developed by VNIIMETMASH, arc given in Table 29. During these
investigations the velocity of cold rolling was within the limits 8 to
15 m/min, whilst the velocity of hot rolling was 20 to 40 m/min.
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